Sign-language / src /main.py
openfree's picture
Update src/main.py
95488d7 verified
raw
history blame
2.89 kB
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request
from transformers import pipeline
import torch
import os
app = Flask(__name__)
app.config['TITLE'] = 'ASL Translator'
# Set cache directory
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.makedirs('/tmp/transformers_cache', exist_ok=True)
# Force CPU usage
device = torch.device('cpu')
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# Initialize translator with local cache
translator = pipeline("translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device,
model_kwargs={"cache_dir": "/tmp/transformers_cache"})
nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()
def translate_korean_to_english(text):
if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
translation = translator(text)[0]['translation_text']
return translation
return text
@app.route('/')
def index():
return render_template('index.html', title=app.config['TITLE'])
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
input_text = request.form['inputSentence']
try:
english_text = translate_korean_to_english(input_text)
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens)
for gloss in gloss_list_lower]
gloss_sentence_after_synonym = " ".join(gloss_list)
return render_template('result.html',
title=app.config['TITLE'],
original_sentence=input_text,
english_translation=english_text,
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
except Exception as e:
return render_template('error.html', error=str(e))
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)