Sign-language / src /main.py
Figea's picture
add docstring
974d749
raw
history blame
2.2 kB
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request
# ---- Initialise Flask App
#
app = Flask(__name__)
# ---- Render the homepage template
#
@app.route('/')
def index():
return render_template('index.html')
# ---- Translate english input sentence into gloss sentence
#
@app.route('/translate/', methods=['POST'])
def result():
# ---- Load NLP models and data
#
nlp, dict_docs_spacy = sp.load_spacy_values()
_, list_2000_tokens = dg.load_data()
if request.method == 'POST':
# ---- Get the raw sentence and translate it to gloss
#
sentence = request.form['inputSentence']
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum() ]
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
# ---- Substitute gloss tokens with synonyms if not in the common token list
#
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) for gloss in gloss_list_lower]
gloss_sentence_after_synonym = " ".join(gloss_list)
# ---- Render the result template with both versions of the gloss sentence
#
return render_template('translate.html',\
sentence=sentence,\
gloss_sentence_before_synonym=gloss_sentence_before_synonym,\
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
# ---- Generate video streaming from gloss_sentence
#
@app.route('/video_feed')
def video_feed():
dataset, list_2000_tokens = dg.load_data()
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.debug = True
app.run(host="0.0.0.0", port=5000, debug=True)