Sign-language / src /main.py
openfree's picture
Update src/main.py
fab2e99 verified
raw
history blame
2.14 kB
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request
from googletrans import Translator
app = Flask(__name__)
# Initialize translators and data
nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()
ko_to_en_translator = Translator()
@app.route('/')
def index():
return render_template('index.html')
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
# Get Korean input and translate to English
korean_sentence = request.form['inputSentence']
english_translation = ko_to_en_translator.translate(korean_sentence, src='ko', dest='en').text
# Translate English to ASL gloss
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_translation)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
# Process synonyms
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens)
for gloss in gloss_list_lower]
gloss_sentence_after_synonym = " ".join(gloss_list)
return render_template('translate.html',
original_sentence=korean_sentence,
english_translation=english_translation,
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.debug = True
app.run(host="0.0.0.0", port=5000, debug=True)