Spaces:
Building
Building
Update src/main.py
Browse files- src/main.py +6 -9
src/main.py
CHANGED
@@ -2,22 +2,18 @@ import display_gloss as dg
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
5 |
-
import nltk
|
6 |
-
|
7 |
-
|
8 |
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
12 |
-
nltk.download('wordnet')
|
13 |
|
14 |
@app.route('/')
|
15 |
def index():
|
16 |
global dataset, vocabulary_list, dict_2000_tokens, nlp, dict_docs_spacy
|
17 |
|
18 |
dataset, vocabulary_list = dg.load_data()
|
19 |
-
dict_2000_tokens = dataset["gloss"].unique()
|
20 |
-
nlp, dict_docs_spacy = sp.load_spacy_values()
|
21 |
|
22 |
return render_template('index.html')
|
23 |
|
@@ -28,9 +24,10 @@ def result():
|
|
28 |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence)
|
29 |
generated_gloss = eng_to_asl_translator.translate_to_gloss()
|
30 |
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum() ]
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
gloss_sentence = " ".join(gloss_list)
|
35 |
return render_template('translate.html', sentence=sentence, gloss_list=gloss_list, gloss_sentence=gloss_sentence)
|
36 |
|
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
|
|
9 |
|
10 |
@app.route('/')
|
11 |
def index():
|
12 |
global dataset, vocabulary_list, dict_2000_tokens, nlp, dict_docs_spacy
|
13 |
|
14 |
dataset, vocabulary_list = dg.load_data()
|
15 |
+
#dict_2000_tokens = dataset["gloss"].unique()
|
16 |
+
#nlp, dict_docs_spacy = sp.load_spacy_values()
|
17 |
|
18 |
return render_template('index.html')
|
19 |
|
|
|
24 |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence)
|
25 |
generated_gloss = eng_to_asl_translator.translate_to_gloss()
|
26 |
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum() ]
|
27 |
+
gloss_list = gloss_list_lower
|
28 |
+
#print('gloss before synonym:', gloss_list_lower)
|
29 |
+
#gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, dict_2000_tokens) for gloss in gloss_list_lower]
|
30 |
+
#print('synonym list:', gloss_list)
|
31 |
gloss_sentence = " ".join(gloss_list)
|
32 |
return render_template('translate.html', sentence=sentence, gloss_list=gloss_list, gloss_sentence=gloss_sentence)
|
33 |
|