Spaces:
Building
Building
Delete src/synonyms_final_vf.py
Browse files- src/synonyms_final_vf.py +0 -125
src/synonyms_final_vf.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
|
2 |
-
import pandas as pd
|
3 |
-
import spacy
|
4 |
-
import numpy as np
|
5 |
-
from sklearn.cluster import DBSCAN
|
6 |
-
from sklearn.metrics.pairwise import cosine_distances
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import nltk
|
9 |
-
from nltk.corpus import wordnet
|
10 |
-
|
11 |
-
def load_data(file_path):
|
12 |
-
"""
|
13 |
-
This function loads the data from a given file_path
|
14 |
-
|
15 |
-
parameter: str the file path
|
16 |
-
|
17 |
-
Returns: the unique words in gloss column
|
18 |
-
"""
|
19 |
-
data = pd.read_csv(file_path, delimiter=";")
|
20 |
-
return data["gloss"].unique()
|
21 |
-
|
22 |
-
def initialize_spacy_model(model_name="en_core_web_md"):
|
23 |
-
return spacy.load(model_name)
|
24 |
-
|
25 |
-
def download_wordnet():
|
26 |
-
"""
|
27 |
-
This function downloads a dictionary that will be used to find antonyms
|
28 |
-
"""
|
29 |
-
nltk.download('wordnet')
|
30 |
-
|
31 |
-
def generate_word_vectors(words, model):
|
32 |
-
return np.array([model(word).vector for word in words])
|
33 |
-
|
34 |
-
def plot_k_distance_graph(distances, k):
|
35 |
-
k_distances = np.sort(distances, axis=1)[:, k]
|
36 |
-
k_distances = np.sort(k_distances)
|
37 |
-
plt.figure(figsize=(10, 5))
|
38 |
-
plt.plot(k_distances)
|
39 |
-
plt.xlabel('Points sorted by distance')
|
40 |
-
plt.ylabel(f'{k}-th Nearest Neighbor Distance')
|
41 |
-
plt.title(f'k-distance Graph for k={k}')
|
42 |
-
plt.grid(True)
|
43 |
-
plt.show()
|
44 |
-
|
45 |
-
def perform_dbscan_clustering(word_vectors, eps, min_samples=5):
|
46 |
-
dbscan = DBSCAN(metric='cosine', eps=eps, min_samples=min_samples)
|
47 |
-
dbscan.fit(word_vectors)
|
48 |
-
return dbscan
|
49 |
-
|
50 |
-
def create_cluster_mapping(words, dbscan_labels):
|
51 |
-
cluster_to_words = {}
|
52 |
-
for word, cluster in zip(words, dbscan_labels):
|
53 |
-
if cluster not in cluster_to_words:
|
54 |
-
cluster_to_words[cluster] = []
|
55 |
-
cluster_to_words[cluster].append(word)
|
56 |
-
return cluster_to_words
|
57 |
-
|
58 |
-
def find_antonyms(word):
|
59 |
-
antonyms = set()
|
60 |
-
for syn in wordnet.synsets(word):
|
61 |
-
for lemma in syn.lemmas():
|
62 |
-
if lemma.antonyms():
|
63 |
-
antonyms.add(lemma.antonyms()[0].name())
|
64 |
-
return antonyms
|
65 |
-
|
66 |
-
def find_synonyms_in_cluster(word, model, cluster_to_words, dbscan_model):
|
67 |
-
"""
|
68 |
-
This function finds the most similar word in the same cluster, and excludes antonyms
|
69 |
-
"""
|
70 |
-
word_vector = model(word).vector
|
71 |
-
cluster_label = dbscan_model.fit_predict([word_vector])[0]
|
72 |
-
cluster_words = cluster_to_words.get(cluster_label, [])
|
73 |
-
|
74 |
-
if not cluster_words:
|
75 |
-
return None
|
76 |
-
|
77 |
-
antonyms = find_antonyms(word)
|
78 |
-
similarities = [(dict_word, model(dict_word).similarity(model(word))) for dict_word in cluster_words if dict_word != word and dict_word not in antonyms]
|
79 |
-
|
80 |
-
if not similarities:
|
81 |
-
return None
|
82 |
-
|
83 |
-
most_similar_word = sorted(similarities, key=lambda item: -item[1])[0][0]
|
84 |
-
return most_similar_word
|
85 |
-
|
86 |
-
def display_clusters(cluster_to_words):
|
87 |
-
for cluster_label, words in cluster_to_words.items():
|
88 |
-
if cluster_label != -1: # Exclude noise points
|
89 |
-
print(f"Cluster {cluster_label}: {words}")
|
90 |
-
else:
|
91 |
-
print(f"Noise: {words}")
|
92 |
-
|
93 |
-
def main(file_path, model_name="en_core_web_md", eps=0.23, min_samples=5, k=5):
|
94 |
-
global nlp, cluster_to_words, dbscan
|
95 |
-
|
96 |
-
dict_2000 = load_data(file_path)
|
97 |
-
nlp = initialize_spacy_model(model_name)
|
98 |
-
download_wordnet()
|
99 |
-
|
100 |
-
word_vectors = generate_word_vectors(dict_2000, nlp)
|
101 |
-
|
102 |
-
# distances = cosine_distances(word_vectors)
|
103 |
-
# plot_k_distance_graph(distances, k)
|
104 |
-
|
105 |
-
dbscan = perform_dbscan_clustering(word_vectors, eps, min_samples)
|
106 |
-
cluster_to_words = create_cluster_mapping(dict_2000, dbscan.labels_)
|
107 |
-
|
108 |
-
if __name__ == "__main__":
|
109 |
-
main("filtered_WLASL.csv")
|
110 |
-
|
111 |
-
##TEST##
|
112 |
-
#target_word = "unhappy"
|
113 |
-
#synonym = find_synonyms_in_cluster(target_word, nlp, cluster_to_words, dbscan)
|
114 |
-
#print(f"The most similar word to '{target_word}' is '{synonym}'")
|
115 |
-
|
116 |
-
##If you want to see clusters##
|
117 |
-
#num_clusters = len(set(dbscan.labels_)) - (1 if -1 in dbscan.labels_ else 0)
|
118 |
-
#print(f"Number of clusters: {num_clusters}")
|
119 |
-
|
120 |
-
#cluster_label = dbscan.fit_predict([nlp("unhappy").vector])[0]
|
121 |
-
#same_cluster_words = cluster_to_words.get(cluster_label, [])
|
122 |
-
#print(f"Words in the same cluster as 'unhappy': {same_cluster_words}")
|
123 |
-
|
124 |
-
#display_clusters(cluster_to_words)
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|