Spaces:
Building
Building
Update src/main.py
Browse files- src/main.py +59 -11
src/main.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
import display_gloss as dg
|
3 |
import synonyms_preprocess as sp
|
4 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
@@ -17,6 +16,14 @@ app.config['TITLE'] = 'Sign Language Translate'
|
|
17 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
18 |
dataset, list_2000_tokens = dg.load_data()
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def translate_korean_to_english(text):
|
21 |
try:
|
22 |
url = "https://translate.googleapis.com/translate_a/single"
|
@@ -40,11 +47,21 @@ def translate_korean_to_english(text):
|
|
40 |
def generate_complete_video(gloss_list, dataset, list_2000_tokens):
|
41 |
try:
|
42 |
frames = []
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
if not frames:
|
50 |
raise Exception("No frames generated")
|
@@ -89,12 +106,43 @@ def result():
|
|
89 |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
|
90 |
generated_gloss = eng_to_asl_translator.translate_to_gloss()
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
for gloss in gloss_list_lower]
|
97 |
-
gloss_sentence_after_synonym = " ".join(gloss_list)
|
98 |
|
99 |
return render_template('result.html',
|
100 |
title=app.config['TITLE'],
|
|
|
|
|
1 |
import display_gloss as dg
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
|
|
16 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
17 |
dataset, list_2000_tokens = dg.load_data()
|
18 |
|
19 |
+
def is_proper_noun(word):
|
20 |
+
"""고유명사 여부를 확인하는 함수"""
|
21 |
+
return word[0].isupper() if word else False
|
22 |
+
|
23 |
+
def spell_out_word(word):
|
24 |
+
"""단어를 개별 알파벳으로 분리하는 함수"""
|
25 |
+
return ' '.join(list(word.lower()))
|
26 |
+
|
27 |
def translate_korean_to_english(text):
|
28 |
try:
|
29 |
url = "https://translate.googleapis.com/translate_a/single"
|
|
|
47 |
def generate_complete_video(gloss_list, dataset, list_2000_tokens):
|
48 |
try:
|
49 |
frames = []
|
50 |
+
is_spelling = False
|
51 |
+
|
52 |
+
for gloss in gloss_list:
|
53 |
+
if gloss == 'FINGERSPELL-START':
|
54 |
+
is_spelling = True
|
55 |
+
continue
|
56 |
+
elif gloss == 'FINGERSPELL-END':
|
57 |
+
is_spelling = False
|
58 |
+
continue
|
59 |
+
|
60 |
+
for frame in dg.generate_video([gloss], dataset, list_2000_tokens):
|
61 |
+
frame_data = frame.split(b'\r\n\r\n')[1]
|
62 |
+
nparr = np.frombuffer(frame_data, np.uint8)
|
63 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
64 |
+
frames.append(img)
|
65 |
|
66 |
if not frames:
|
67 |
raise Exception("No frames generated")
|
|
|
106 |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
|
107 |
generated_gloss = eng_to_asl_translator.translate_to_gloss()
|
108 |
|
109 |
+
# 단어 처리
|
110 |
+
processed_gloss = []
|
111 |
+
words = generated_gloss.split()
|
112 |
+
|
113 |
+
for word in words:
|
114 |
+
if is_proper_noun(word):
|
115 |
+
# 고유명사인 경우 철자를 하나씩 분리
|
116 |
+
spelled_word = spell_out_word(word)
|
117 |
+
processed_gloss.extend(['FINGERSPELL-START'] + spelled_word.split() + ['FINGERSPELL-END'])
|
118 |
+
else:
|
119 |
+
# 일반 단어는 기존 방식대로 처리
|
120 |
+
word_lower = word.lower()
|
121 |
+
if word_lower.isalnum():
|
122 |
+
processed_gloss.append(word_lower)
|
123 |
+
|
124 |
+
gloss_sentence_before_synonym = " ".join(processed_gloss)
|
125 |
+
|
126 |
+
# 고유명사가 아닌 단어들만 동의어 처리
|
127 |
+
final_gloss = []
|
128 |
+
i = 0
|
129 |
+
while i < len(processed_gloss):
|
130 |
+
if processed_gloss[i] == 'FINGERSPELL-START':
|
131 |
+
# 철자 처리 부분을 그대로 유지
|
132 |
+
final_gloss.append(processed_gloss[i])
|
133 |
+
i += 1
|
134 |
+
while i < len(processed_gloss) and processed_gloss[i] != 'FINGERSPELL-END':
|
135 |
+
final_gloss.append(processed_gloss[i])
|
136 |
+
i += 1
|
137 |
+
final_gloss.append('FINGERSPELL-END')
|
138 |
+
i += 1
|
139 |
+
else:
|
140 |
+
# 일반 단어는 동의어 처리
|
141 |
+
word = processed_gloss[i]
|
142 |
+
final_gloss.append(sp.find_synonyms(word, nlp, dict_docs_spacy, list_2000_tokens))
|
143 |
+
i += 1
|
144 |
|
145 |
+
gloss_sentence_after_synonym = " ".join(final_gloss)
|
|
|
|
|
146 |
|
147 |
return render_template('result.html',
|
148 |
title=app.config['TITLE'],
|