Spaces:
Building
Building
Update src/main.py
Browse files- src/main.py +16 -11
src/main.py
CHANGED
@@ -2,33 +2,38 @@ import display_gloss as dg
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
5 |
-
from transformers import pipeline
|
6 |
import torch
|
7 |
import os
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
app.config['TITLE'] = 'ASL Translator'
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
os.
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
device = torch.device('cpu')
|
18 |
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
27 |
dataset, list_2000_tokens = dg.load_data()
|
28 |
|
29 |
def translate_korean_to_english(text):
|
30 |
if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
|
31 |
-
|
|
|
|
|
32 |
return translation
|
33 |
return text
|
34 |
|
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqGeneration
|
6 |
import torch
|
7 |
import os
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
app.config['TITLE'] = 'ASL Translator'
|
11 |
|
12 |
+
# 캐시 디렉토리 설정
|
13 |
+
cache_dir = "/tmp/huggingface"
|
14 |
+
if not os.path.exists(cache_dir):
|
15 |
+
os.makedirs(cache_dir, exist_ok=True)
|
16 |
+
os.environ['TRANSFORMERS_CACHE'] = cache_dir
|
17 |
+
os.environ['HF_HOME'] = cache_dir
|
18 |
|
19 |
+
# CPU 설정
|
20 |
device = torch.device('cpu')
|
21 |
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
22 |
|
23 |
+
# 번역 모델 초기화
|
24 |
+
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
26 |
+
model = AutoModelForSeq2SeqGeneration.from_pretrained(model_name, cache_dir=cache_dir)
|
27 |
+
model = model.to(device)
|
28 |
|
29 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
30 |
dataset, list_2000_tokens = dg.load_data()
|
31 |
|
32 |
def translate_korean_to_english(text):
|
33 |
if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
|
34 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
35 |
+
outputs = model.generate(**inputs)
|
36 |
+
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
return translation
|
38 |
return text
|
39 |
|