Spaces:
Building
Building
Upload synonyms_preprocess.py
Browse files- src/synonyms_preprocess.py +43 -0
src/synonyms_preprocess.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import pickle
|
3 |
+
from nltk.corpus import wordnet
|
4 |
+
|
5 |
+
|
6 |
+
def load_spacy_values(filepath_model_spacy='model_spacy_synonyms', filepath_docs_spacy = 'dict_spacy_object.pkl'):
|
7 |
+
|
8 |
+
nlp = spacy.load(filepath_model_spacy)
|
9 |
+
|
10 |
+
|
11 |
+
with open(filepath_docs_spacy, 'rb') as file:
|
12 |
+
dict_docs_spacy_bytes = pickle.load(file)
|
13 |
+
|
14 |
+
dict_docs_spacy = {key: spacy.tokens.Doc(nlp.vocab).from_bytes(doc_bytes) for key, doc_bytes in dict_docs_spacy_bytes.items()}
|
15 |
+
|
16 |
+
return nlp, dict_docs_spacy
|
17 |
+
|
18 |
+
def find_antonyms(word):
|
19 |
+
antonyms = set()
|
20 |
+
syn_set = wordnet.synsets(word)
|
21 |
+
for syn in syn_set:
|
22 |
+
for lemma in syn.lemmas():
|
23 |
+
if lemma.antonyms():
|
24 |
+
antonyms.add(lemma.antonyms()[0].name())
|
25 |
+
return antonyms
|
26 |
+
|
27 |
+
def find_synonyms(word, model, dict_embedding, dict_2000_tokens): #cluster_to_words, dbscan_model):
|
28 |
+
"""
|
29 |
+
This function finds the most similar word in the same cluster, and excludes antonyms
|
30 |
+
"""
|
31 |
+
antonyms = find_antonyms(word)
|
32 |
+
dict_2000_tokens_less_antonyms = [token for token in dict_2000_tokens if token not in antonyms]
|
33 |
+
|
34 |
+
word_embedding = model(word)
|
35 |
+
|
36 |
+
similarities=[]
|
37 |
+
|
38 |
+
for token in dict_2000_tokens_less_antonyms:
|
39 |
+
similarities.append((token, dict_embedding.get(token).similarity(word_embedding)))
|
40 |
+
|
41 |
+
most_similar_token = sorted(similarities, key=lambda item: -item[1])[0][0]
|
42 |
+
|
43 |
+
return most_similar_token
|