import display_gloss as dg import synonyms_preprocess as sp from NLP_Spacy_base_translator import NlpSpacyBaseTranslator from flask import Flask, render_template, Response, request app = Flask(__name__) @app.route('/') def index(): global dataset, vocabulary_list, dict_2000_tokens, nlp, dict_docs_spacy dataset, vocabulary_list = dg.load_data() dict_2000_tokens = dataset["gloss"].unique() nlp, dict_docs_spacy = sp.load_spacy_values() return render_template('index.html') @app.route('/translate/', methods=['POST']) def result(): if request.method == 'POST': sentence = request.form['inputSentence'] eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence) generated_gloss = eng_to_asl_translator.translate_to_gloss() gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum() ] #gloss_list = gloss_list_lower #gloss_list = sentence.split() #print('gloss before synonym:', gloss_list_lower) gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, dict_2000_tokens) for gloss in gloss_list_lower] #print('synonym list:', gloss_list) gloss_sentence = " ".join(gloss_list) return render_template('translate.html', sentence=sentence, gloss_list=gloss_list, gloss_sentence=gloss_sentence) @app.route('/video_feed') def video_feed(): #dataset, vocabulary_list = dg.load_data() sentence = request.args.get('gloss_sentence', '') gloss_list = sentence.split() return Response(dg.generate_video(gloss_list, dataset, vocabulary_list), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == "__main__": app.debug = True app.run(host="0.0.0.0", port=5000, debug=True)