import display_gloss as dg import synonyms_preprocess as sp from NLP_Spacy_base_translator import NlpSpacyBaseTranslator from flask import Flask, render_template, Response, request import googletrans from googletrans import Translator app = Flask(__name__, static_folder='static') app.config['TITLE'] = 'Sign Language Translate' nlp, dict_docs_spacy = sp.load_spacy_values() dataset, list_2000_tokens = dg.load_data() translator = Translator(service_urls=['translate.google.com']) def translate_korean_to_english(text): try: # 한글 감지 if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text): translation = translator.translate(text, src='ko', dest='en') print(f"Translation result: {translation.text}") # 디버깅용 return translation.text return text except Exception as e: print(f"Translation error: {e}") try: # 백업 방식으로 파파고 API 사용 headers = { 'X-Naver-Client-Id': 'YOUR_CLIENT_ID', 'X-Naver-Client-Secret': 'YOUR_CLIENT_SECRET' } data = { 'source': 'ko', 'target': 'en', 'text': text } response = requests.post('https://openapi.naver.com/v1/papago/n2mt', headers=headers, data=data) return response.json()['message']['result']['translatedText'] except: return text @app.route('/') def index(): return render_template('index.html', title=app.config['TITLE']) @app.route('/translate/', methods=['POST']) def result(): if request.method == 'POST': input_text = request.form['inputSentence'] try: english_text = translate_korean_to_english(input_text) if english_text == input_text and any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in input_text): raise Exception("Translation failed") eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text) generated_gloss = eng_to_asl_translator.translate_to_gloss() gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()] gloss_sentence_before_synonym = " ".join(gloss_list_lower) gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) for gloss in gloss_list_lower] gloss_sentence_after_synonym = " ".join(gloss_list) return render_template('result.html', title=app.config['TITLE'], original_sentence=input_text, english_translation=english_text, gloss_sentence_before_synonym=gloss_sentence_before_synonym, gloss_sentence_after_synonym=gloss_sentence_after_synonym) except Exception as e: print(f"Error in translation process: {e}") return render_template('error.html', error=str(e)) @app.route('/video_feed') def video_feed(): sentence = request.args.get('gloss_sentence_to_display', '') gloss_list = sentence.split() return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=True)