import display_gloss as dg from NLP_Spacy_base_translator import NlpSpacyBaseTranslator from flask import Flask, render_template, Response, request app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/translate/', methods=['POST']) def result(): if request.method == 'POST': sentence = request.form['inputSentence'] eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence) generated_gloss = eng_to_asl_translator.translate_to_gloss() gloss_list = generated_gloss.split() print(gloss_list) return render_template('translate.html', sentence=sentence, gloss_list=gloss_list) @app.route('/video_feed') def video_feed(): sentence = request.args.get('sentence', '') eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence) generated_gloss = eng_to_asl_translator.translate_to_gloss() gloss_list = [gloss.lower() for gloss in generated_gloss.split()] print(f'video_feed gloss_list: {gloss_list}') dataset, vocabulary_list = dg.load_data() return Response(dg.generate_video(gloss_list, dataset, vocabulary_list), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == "__main__": app.debug = True app.run(host="0.0.0.0", port=5000, debug=True)