import display_gloss as dg import synonyms_preprocess as sp from NLP_Spacy_base_translator import NlpSpacyBaseTranslator from flask import Flask, render_template, Response, request from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqTranslation import torch import os app = Flask(__name__, static_folder='static') app.config['TITLE'] = 'Sign Language Translate' # Set cache directory cache_dir = "/tmp/huggingface" if not os.path.exists(cache_dir): os.makedirs(cache_dir, exist_ok=True) os.environ['TRANSFORMERS_CACHE'] = cache_dir os.environ['HF_HOME'] = cache_dir # Force CPU usage device = torch.device('cpu') os.environ['CUDA_VISIBLE_DEVICES'] = '' # Load pre-trained Korean-English translation model model_name = "Helsinki-NLP/opus-mt-ko-en" tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) model = AutoModelForSeq2SeqTranslation.from_pretrained(model_name, cache_dir=cache_dir) model = model.to(device) nlp, dict_docs_spacy = sp.load_spacy_values() dataset, list_2000_tokens = dg.load_data() def translate_korean_to_english(text): try: # Check if input is Korean if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text): inputs = tokenizer(text, return_tensors="pt", padding=True) outputs = model.generate(**inputs) translation = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Translated text: {translation}") # Debug log return translation return text except Exception as e: print(f"Translation error: {e}") return text @app.route('/') def index(): return render_template('index.html', title=app.config['TITLE']) @app.route('/translate/', methods=['POST']) def result(): if request.method == 'POST': input_text = request.form['inputSentence'] try: # Translate to English english_text = translate_korean_to_english(input_text) # Check if translation failed if english_text == input_text and any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in input_text): raise Exception("Translation failed") # Convert to ASL gloss eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text) generated_gloss = eng_to_asl_translator.translate_to_gloss() # Process gloss gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()] gloss_sentence_before_synonym = " ".join(gloss_list_lower) gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) for gloss in gloss_list_lower] gloss_sentence_after_synonym = " ".join(gloss_list) return render_template('result.html', title=app.config['TITLE'], original_sentence=input_text, english_translation=english_text, gloss_sentence_before_synonym=gloss_sentence_before_synonym, gloss_sentence_after_synonym=gloss_sentence_after_synonym) except Exception as e: print(f"Error in translation process: {e}") return render_template('error.html', error=str(e)) @app.route('/video_feed') def video_feed(): sentence = request.args.get('gloss_sentence_to_display', '') gloss_list = sentence.split() return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=True)