File size: 13,927 Bytes
95d2620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from typing import Any, Callable, Dict, List, Optional, Union

import torch

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
from diffusers.pipelines.wan.pipeline_wan import WanPipeline

from src.attention_wan_nag import NAGWanAttnProcessor2_0

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class NAGWanPipeline(WanPipeline):
    @property
    def do_normalized_attention_guidance(self):
        return self._nag_scale > 1

    def _set_nag_attn_processor(self, nag_scale, nag_tau, nag_alpha):
        attn_procs = {}
        for name, origin_attn_proc in self.transformer.attn_processors.items():
            if "attn2" in name:
                attn_procs[name] = NAGWanAttnProcessor2_0(nag_scale=nag_scale, nag_tau=nag_tau, nag_alpha=nag_alpha)
            else:
                attn_procs[name] = origin_attn_proc
        self.transformer.set_attn_processor(attn_procs)

    @torch.no_grad()
    def __call__(
            self,
            prompt: Union[str, List[str]] = None,
            negative_prompt: Union[str, List[str]] = None,
            height: int = 480,
            width: int = 832,
            num_frames: int = 81,
            num_inference_steps: int = 50,
            guidance_scale: float = 5.0,
            num_videos_per_prompt: Optional[int] = 1,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.Tensor] = None,
            prompt_embeds: Optional[torch.Tensor] = None,
            negative_prompt_embeds: Optional[torch.Tensor] = None,
            output_type: Optional[str] = "np",
            return_dict: bool = True,
            attention_kwargs: Optional[Dict[str, Any]] = None,
            callback_on_step_end: Optional[
                Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
            ] = None,
            callback_on_step_end_tensor_inputs: List[str] = ["latents"],
            max_sequence_length: int = 512,

            nag_scale: float = 1.0,
            nag_tau: float = 2.5,
            nag_alpha: float = 0.25,
            nag_negative_prompt: str = None,
            nag_negative_prompt_embeds: Optional[torch.Tensor] = None,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, defaults to `480`):
                The height in pixels of the generated image.
            width (`int`, defaults to `832`):
                The width in pixels of the generated image.
            num_frames (`int`, defaults to `81`):
                The number of frames in the generated video.
            num_inference_steps (`int`, defaults to `50`):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, defaults to `5.0`):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
                The dtype to use for the torch.amp.autocast.

        Examples:

        Returns:
            [`~WanPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
                the first element is a list with the generated images and the second element is a list of `bool`s
                indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            negative_prompt,
            height,
            width,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._current_timestep = None
        self._interrupt = False
        self._nag_scale = nag_scale

        device = self._execution_device

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            max_sequence_length=max_sequence_length,
            device=device,
        )
        if self.do_normalized_attention_guidance:
            if nag_negative_prompt_embeds is None:
                if nag_negative_prompt is None:
                    if self.do_classifier_free_guidance:
                        nag_negative_prompt_embeds = negative_prompt_embeds
                    else:
                        nag_negative_prompt = negative_prompt or ""

                if nag_negative_prompt is not None:
                    nag_negative_prompt_embeds = self.encode_prompt(
                        prompt=nag_negative_prompt,
                        do_classifier_free_guidance=False,
                        num_videos_per_prompt=num_videos_per_prompt,
                        max_sequence_length=max_sequence_length,
                        device=device,
                    )[0]

        if self.do_normalized_attention_guidance:
            prompt_embeds = torch.cat([prompt_embeds, nag_negative_prompt_embeds], dim=0)

        transformer_dtype = self.transformer.dtype
        prompt_embeds = prompt_embeds.to(transformer_dtype)
        if negative_prompt_embeds is not None:
            negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            height,
            width,
            num_frames,
            torch.float32,
            device,
            generator,
            latents,
        )

        # 6. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        
        if self.do_normalized_attention_guidance:
            origin_attn_procs = self.transformer.attn_processors
            self._set_nag_attn_processor(nag_scale, nag_tau, nag_alpha)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                self._current_timestep = t
                latent_model_input = latents.to(transformer_dtype)
                timestep = t.expand(latents.shape[0])

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    attention_kwargs=attention_kwargs,
                    return_dict=False,
                )[0]

                if self.do_classifier_free_guidance:
                    noise_uncond = self.transformer(
                        hidden_states=latent_model_input,
                        timestep=timestep,
                        encoder_hidden_states=negative_prompt_embeds,
                        attention_kwargs=attention_kwargs,
                        return_dict=False,
                    )[0]
                    noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        self._current_timestep = None

        if not output_type == "latent":
            latents = latents.to(self.vae.dtype)
            latents_mean = (
                torch.tensor(self.vae.config.latents_mean)
                .view(1, self.vae.config.z_dim, 1, 1, 1)
                .to(latents.device, latents.dtype)
            )
            latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
                latents.device, latents.dtype
            )
            latents = latents / latents_std + latents_mean
            video = self.vae.decode(latents, return_dict=False)[0]
            video = self.video_processor.postprocess_video(video, output_type=output_type)
        else:
            video = latents

        if self.do_normalized_attention_guidance:
            self.transformer.set_attn_processor(origin_attn_procs)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return WanPipelineOutput(frames=video)