Spaces:
Running
on
Zero
Running
on
Zero
import types | |
import random | |
import spaces | |
import logging | |
import os | |
from pathlib import Path | |
from datetime import datetime | |
import torch | |
import numpy as np | |
import torchaudio | |
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from diffusers import AutoModel | |
import gradio as gr | |
import tempfile | |
from huggingface_hub import hf_hub_download | |
from src.pipeline_wan_nag import NAGWanPipeline | |
from src.transformer_wan_nag import NagWanTransformer3DModel | |
# MMAudio imports | |
try: | |
import mmaudio | |
except ImportError: | |
os.system("pip install -e .") | |
import mmaudio | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate, | |
load_video, make_video, setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
# NAG Video Settings | |
MOD_VALUE = 32 | |
DEFAULT_DURATION_SECONDS = 4 | |
DEFAULT_STEPS = 4 | |
DEFAULT_SEED = 2025 | |
DEFAULT_H_SLIDER_VALUE = 480 | |
DEFAULT_W_SLIDER_VALUE = 832 | |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 129 | |
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details" | |
DEFAULT_AUDIO_NEGATIVE_PROMPT = "music" | |
# NAG Model Settings | |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" | |
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX" | |
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors" | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
# MMAudio Settings | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
log = logging.getLogger() | |
device = 'cuda' | |
dtype = torch.bfloat16 | |
audio_model_config: ModelConfig = all_model_cfg['large_44k_v2'] | |
audio_model_config.download_if_needed() | |
setup_eval_logging() | |
# Initialize NAG Video Model | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME) | |
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16) | |
pipe = NAGWanPipeline.from_pretrained( | |
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0) | |
pipe.to("cuda") | |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors | |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor | |
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward | |
# Initialize MMAudio Model | |
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: | |
seq_cfg = audio_model_config.seq_cfg | |
net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}') | |
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path, | |
synchformer_ckpt=audio_model_config.synchformer_ckpt, | |
enable_conditions=True, | |
mode=audio_model_config.mode, | |
bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
return net, feature_utils, seq_cfg | |
audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model() | |
# Audio generation function | |
def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration): | |
"""Generate and add audio to video using MMAudio""" | |
rng = torch.Generator(device=device) | |
rng.seed() # Random seed for audio | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps) | |
video_info = load_video(video_path, duration) | |
clip_frames = video_info.clip_frames | |
sync_frames = video_info.sync_frames | |
duration = video_info.duration_sec | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
audio_seq_cfg.duration = duration | |
audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len) | |
audios = mmaudio_generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[audio_negative_prompt], | |
feature_utils=audio_feature_utils, | |
net=audio_net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=audio_cfg_strength) | |
audio = audios.float().cpu()[0] | |
# Create video with audio | |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate) | |
return video_with_audio_path | |
# Combined generation function | |
def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds, | |
steps, seed, randomize_seed, enable_audio, audio_negative_prompt, | |
audio_steps, audio_cfg_strength): | |
# Calculate total duration including audio processing if enabled | |
video_duration = int(duration_seconds) * int(steps) * 2.25 + 5 | |
audio_duration = 30 if enable_audio else 0 # Additional time for audio processing | |
return video_duration + audio_duration | |
def generate_video_with_audio( | |
prompt, | |
nag_negative_prompt, nag_scale, | |
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS, | |
steps=DEFAULT_STEPS, | |
seed=DEFAULT_SEED, randomize_seed=False, | |
enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT, | |
audio_steps=25, audio_cfg_strength=4.5, | |
): | |
# Generate video first | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
with torch.inference_mode(): | |
nag_output_frames_list = pipe( | |
prompt=prompt, | |
nag_negative_prompt=nag_negative_prompt, | |
nag_scale=nag_scale, | |
nag_tau=3.5, | |
nag_alpha=0.5, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=0., | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
# Save initial video without audio | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
temp_video_path = tmpfile.name | |
export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS) | |
# Add audio if enabled | |
if enable_audio: | |
try: | |
final_video_path = add_audio_to_video( | |
temp_video_path, | |
prompt, # Use the same prompt for audio generation | |
audio_negative_prompt, | |
audio_steps, | |
audio_cfg_strength, | |
duration_seconds | |
) | |
# Clean up temp video | |
if os.path.exists(temp_video_path): | |
os.remove(temp_video_path) | |
except Exception as e: | |
log.error(f"Audio generation failed: {e}") | |
final_video_path = temp_video_path | |
else: | |
final_video_path = temp_video_path | |
return final_video_path, current_seed | |
# Example generation function | |
def generate_with_example(prompt, nag_negative_prompt, nag_scale): | |
video_path, seed = generate_video_with_audio( | |
prompt=prompt, | |
nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale, | |
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, | |
duration_seconds=DEFAULT_DURATION_SECONDS, | |
steps=DEFAULT_STEPS, | |
seed=DEFAULT_SEED, randomize_seed=False, | |
enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT, | |
audio_steps=25, audio_cfg_strength=4.5, | |
) | |
return video_path, \ | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \ | |
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, \ | |
True, DEFAULT_AUDIO_NEGATIVE_PROMPT, 25, 4.5 | |
# Examples with audio descriptions | |
examples = [ | |
["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], | |
["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, COβ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitaristβs hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], | |
["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage cafΓ©-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at β8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], | |
] | |
# CSS styling | |
css = """ | |
.container { | |
max-width: 1400px; | |
margin: auto; | |
padding: 20px; | |
} | |
.main-title { | |
text-align: center; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-size: 2.5em; | |
font-weight: bold; | |
margin-bottom: 10px; | |
} | |
.subtitle { | |
text-align: center; | |
color: #6b7280; | |
margin-bottom: 30px; | |
} | |
.prompt-container { | |
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%); | |
border-radius: 15px; | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.generate-btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
font-size: 1.2em; | |
font-weight: bold; | |
padding: 15px 30px; | |
border-radius: 10px; | |
border: none; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
width: 100%; | |
margin-top: 20px; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4); | |
} | |
.video-output { | |
border-radius: 15px; | |
overflow: hidden; | |
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2); | |
background: #1a1a1a; | |
padding: 10px; | |
} | |
.settings-panel { | |
background: #f9fafb; | |
border-radius: 15px; | |
padding: 20px; | |
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); | |
} | |
.slider-container { | |
background: white; | |
padding: 15px; | |
border-radius: 10px; | |
margin-bottom: 15px; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); | |
} | |
.info-box { | |
background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%); | |
border-radius: 10px; | |
padding: 15px; | |
margin: 10px 0; | |
border-left: 4px solid #667eea; | |
} | |
.audio-settings { | |
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
border-radius: 10px; | |
padding: 15px; | |
margin-top: 10px; | |
border-left: 4px solid #f59e0b; | |
} | |
""" | |
# Gradio interface | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes="container"): | |
gr.HTML(""" | |
<h1 class="main-title">π¬ VEO3 Free</h1> | |
<p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p> | |
""") | |
gr.HTML(""" | |
<div class="badge-container"> | |
<a href="https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=FusionX&message=ENHANCED%20MODEL&color=%236a4c93&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="FusionX Enhanced"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-FusioniX&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="prompt-container"): | |
prompt = gr.Textbox( | |
label="β¨ Video Prompt (also used for audio generation)", | |
placeholder="Describe your video scene in detail...", | |
lines=3, | |
elem_classes="prompt-input" | |
) | |
with gr.Accordion("π¨ Advanced Video Settings", open=False): | |
nag_negative_prompt = gr.Textbox( | |
label="Video Negative Prompt", | |
value=DEFAULT_NAG_NEGATIVE_PROMPT, | |
lines=2, | |
) | |
nag_scale = gr.Slider( | |
label="NAG Scale", | |
minimum=1.0, | |
maximum=20.0, | |
step=0.25, | |
value=11.0, | |
info="Higher values = stronger guidance" | |
) | |
with gr.Group(elem_classes="settings-panel"): | |
gr.Markdown("### βοΈ Video Settings") | |
with gr.Row(): | |
duration_seconds_input = gr.Slider( | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=DEFAULT_DURATION_SECONDS, | |
label="π± Duration (seconds)", | |
elem_classes="slider-container" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=DEFAULT_STEPS, | |
label="π Inference Steps", | |
elem_classes="slider-container" | |
) | |
with gr.Row(): | |
height_input = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H, | |
step=MOD_VALUE, | |
value=DEFAULT_H_SLIDER_VALUE, | |
label=f"π Height (Γ{MOD_VALUE})", | |
elem_classes="slider-container" | |
) | |
width_input = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W, | |
step=MOD_VALUE, | |
value=DEFAULT_W_SLIDER_VALUE, | |
label=f"π Width (Γ{MOD_VALUE})", | |
elem_classes="slider-container" | |
) | |
with gr.Row(): | |
seed_input = gr.Slider( | |
label="π± Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=DEFAULT_SEED, | |
interactive=True | |
) | |
randomize_seed_checkbox = gr.Checkbox( | |
label="π² Random Seed", | |
value=True, | |
interactive=True | |
) | |
with gr.Group(elem_classes="audio-settings"): | |
gr.Markdown("### π΅ Audio Generation Settings") | |
enable_audio = gr.Checkbox( | |
label="π Enable Automatic Audio Generation", | |
value=True, | |
interactive=True | |
) | |
with gr.Column(visible=True) as audio_settings_group: | |
audio_negative_prompt = gr.Textbox( | |
label="Audio Negative Prompt", | |
value=DEFAULT_AUDIO_NEGATIVE_PROMPT, | |
placeholder="Elements to avoid in audio (e.g., music, speech)", | |
) | |
with gr.Row(): | |
audio_steps = gr.Slider( | |
minimum=10, | |
maximum=50, | |
step=5, | |
value=25, | |
label="ποΈ Audio Steps", | |
info="More steps = better quality" | |
) | |
audio_cfg_strength = gr.Slider( | |
minimum=1.0, | |
maximum=10.0, | |
step=0.5, | |
value=4.5, | |
label="ποΈ Audio Guidance", | |
info="Strength of prompt guidance" | |
) | |
# Toggle audio settings visibility | |
enable_audio.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=[enable_audio], | |
outputs=[audio_settings_group] | |
) | |
generate_button = gr.Button( | |
"π¬ Generate Video with Audio", | |
variant="primary", | |
elem_classes="generate-btn" | |
) | |
with gr.Column(scale=1): | |
video_output = gr.Video( | |
label="Generated Video with Audio", | |
autoplay=True, | |
interactive=False, | |
elem_classes="video-output" | |
) | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 20px; color: #6b7280;"> | |
<p>π‘ Tip: The same prompt is used for both video and audio generation!</p> | |
<p>π§ Audio is automatically matched to the visual content</p> | |
</div> | |
""") | |
gr.Markdown("### π― Example Prompts") | |
gr.Examples( | |
examples=examples, | |
fn=generate_with_example, | |
inputs=[prompt, nag_negative_prompt, nag_scale], | |
outputs=[ | |
video_output, | |
height_input, width_input, duration_seconds_input, | |
steps_slider, seed_input, | |
enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength | |
], | |
cache_examples="lazy" | |
) | |
# Connect UI elements | |
ui_inputs = [ | |
prompt, | |
nag_negative_prompt, nag_scale, | |
height_input, width_input, duration_seconds_input, | |
steps_slider, | |
seed_input, randomize_seed_checkbox, | |
enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength, | |
] | |
generate_button.click( | |
fn=generate_video_with_audio, | |
inputs=ui_inputs, | |
outputs=[video_output, seed_input], | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |