Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
from diffusers.models.attention_processor import AttentionProcessor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class NagWanTransformer3DModel(WanTransformer3DModel): | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_hidden_states: torch.Tensor, | |
encoder_hidden_states_image: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p_t, p_h, p_w = self.config.patch_size | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p_h | |
post_patch_width = width // p_w | |
rotary_emb = self.rope(hidden_states) | |
hidden_states = self.patch_embedding(hidden_states) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder( | |
timestep, encoder_hidden_states, encoder_hidden_states_image | |
) | |
timestep_proj = timestep_proj.unflatten(1, (6, -1)) | |
if encoder_hidden_states_image is not None: | |
bs_encoder_hidden_states = len(encoder_hidden_states) | |
bs_encoder_hidden_states_image = len(encoder_hidden_states_image) | |
bs_scale = bs_encoder_hidden_states / bs_encoder_hidden_states_image | |
assert bs_scale in [1, 2, 3] | |
if bs_scale != 1: | |
encoder_hidden_states_image = encoder_hidden_states_image.tile(int(bs_scale), 1, 1) | |
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1) | |
# 4. Transformer blocks | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
for block in self.blocks: | |
hidden_states = self._gradient_checkpointing_func( | |
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb | |
) | |
else: | |
for block in self.blocks: | |
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb) | |
# 5. Output norm, projection & unpatchify | |
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1) | |
# Move the shift and scale tensors to the same device as hidden_states. | |
# When using multi-GPU inference via accelerate these will be on the | |
# first device rather than the last device, which hidden_states ends up | |
# on. | |
shift = shift.to(hidden_states.device) | |
scale = scale.to(hidden_states.device) | |
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 | |
) | |
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) | |
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) |