Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,95 @@
|
|
1 |
# Create src directory structure
|
2 |
import os
|
3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
os.makedirs("src", exist_ok=True)
|
5 |
|
|
|
|
|
|
|
6 |
# Create __init__.py
|
7 |
with open("src/__init__.py", "w") as f:
|
8 |
f.write("")
|
|
|
|
|
9 |
|
10 |
# Create transformer_wan_nag.py
|
11 |
with open("src/transformer_wan_nag.py", "w") as f:
|
12 |
f.write('''
|
13 |
import torch
|
14 |
import torch.nn as nn
|
15 |
-
from diffusers.models import ModelMixin
|
16 |
-
from diffusers.configuration_utils import ConfigMixin
|
17 |
-
from diffusers.models.attention_processor import AttentionProcessor
|
18 |
from typing import Optional, Dict, Any
|
19 |
import torch.nn.functional as F
|
20 |
|
21 |
-
class NagWanTransformer3DModel(
|
22 |
"""NAG-enhanced Transformer for video generation"""
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@classmethod
|
25 |
def from_single_file(cls, model_path, **kwargs):
|
26 |
"""Load model from single file"""
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
except:
|
39 |
-
pass
|
40 |
|
41 |
return model.to(kwargs.get('torch_dtype', torch.float32))
|
42 |
-
|
43 |
-
def __init__(self):
|
44 |
-
super().__init__()
|
45 |
-
self.config = {"in_channels": 4, "out_channels": 4}
|
46 |
-
self.training = False
|
47 |
-
|
48 |
-
# Simple transformer layers
|
49 |
-
self.norm = nn.LayerNorm(768)
|
50 |
-
self.proj_in = nn.Linear(4, 768)
|
51 |
-
self.transformer_blocks = nn.ModuleList([
|
52 |
-
nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
|
53 |
-
for _ in range(4)
|
54 |
-
])
|
55 |
-
self.proj_out = nn.Linear(768, 4)
|
56 |
|
57 |
@staticmethod
|
58 |
def attn_processors():
|
@@ -61,6 +98,14 @@ class NagWanTransformer3DModel(ModelMixin, ConfigMixin):
|
|
61 |
@staticmethod
|
62 |
def set_attn_processor(processor):
|
63 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def forward(
|
66 |
self,
|
@@ -70,31 +115,38 @@ class NagWanTransformer3DModel(ModelMixin, ConfigMixin):
|
|
70 |
attention_mask: Optional[torch.Tensor] = None,
|
71 |
**kwargs
|
72 |
):
|
73 |
-
#
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
hidden_states = hidden_states.view(batch * frames, height * width, channels)
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
hidden_states = block(hidden_states)
|
87 |
|
88 |
-
#
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
hidden_states = hidden_states.permute(0, 4, 1, 2, 3).contiguous()
|
94 |
|
95 |
-
return
|
96 |
''')
|
97 |
|
|
|
|
|
98 |
# Create pipeline_wan_nag.py
|
99 |
with open("src/pipeline_wan_nag.py", "w") as f:
|
100 |
f.write('''
|
@@ -129,7 +181,11 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
129 |
transformer=transformer,
|
130 |
scheduler=scheduler,
|
131 |
)
|
132 |
-
|
|
|
|
|
|
|
|
|
133 |
|
134 |
@classmethod
|
135 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
@@ -230,7 +286,10 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
230 |
)
|
231 |
|
232 |
# Prepare latents
|
233 |
-
|
|
|
|
|
|
|
234 |
shape = (
|
235 |
batch_size,
|
236 |
num_channels_latents,
|
@@ -293,7 +352,10 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
293 |
callback(i, t, latents)
|
294 |
|
295 |
# Decode latents
|
296 |
-
|
|
|
|
|
|
|
297 |
video = self.vae.decode(latents).sample
|
298 |
video = (video / 2 + 0.5).clamp(0, 1)
|
299 |
|
@@ -313,6 +375,20 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
313 |
return type('PipelineOutput', (), {'frames': frames})()
|
314 |
''')
|
315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
# Now import and run the main application
|
317 |
import types
|
318 |
import random
|
@@ -327,9 +403,18 @@ from huggingface_hub import hf_hub_download
|
|
327 |
import logging
|
328 |
import gc
|
329 |
|
330 |
-
#
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
# MMAudio imports
|
335 |
try:
|
@@ -354,12 +439,12 @@ MOD_VALUE = 32
|
|
354 |
DEFAULT_DURATION_SECONDS = 4
|
355 |
DEFAULT_STEPS = 4
|
356 |
DEFAULT_SEED = 2025
|
357 |
-
DEFAULT_H_SLIDER_VALUE =
|
358 |
-
DEFAULT_W_SLIDER_VALUE =
|
359 |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
360 |
|
361 |
-
SLIDER_MIN_H, SLIDER_MAX_H = 128,
|
362 |
-
SLIDER_MIN_W, SLIDER_MAX_W = 128,
|
363 |
MAX_SEED = np.iinfo(np.int32).max
|
364 |
|
365 |
FIXED_FPS = 16
|
@@ -375,14 +460,41 @@ LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
|
375 |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
376 |
|
377 |
# Initialize models
|
|
|
378 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
|
|
|
|
381 |
pipe = NAGWanPipeline.from_pretrained(
|
382 |
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
|
383 |
)
|
384 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
388 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
@@ -392,7 +504,7 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
392 |
torch.backends.cudnn.allow_tf32 = True
|
393 |
|
394 |
log = logging.getLogger()
|
395 |
-
device = 'cuda'
|
396 |
dtype = torch.bfloat16
|
397 |
|
398 |
# Global audio model variables
|
@@ -598,7 +710,7 @@ def generate_video(
|
|
598 |
height=target_h, width=target_w, num_frames=num_frames,
|
599 |
guidance_scale=0.,
|
600 |
num_inference_steps=int(steps),
|
601 |
-
generator=torch.Generator(device=
|
602 |
).frames[0]
|
603 |
|
604 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
@@ -626,14 +738,14 @@ def update_audio_visibility(audio_mode):
|
|
626 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
627 |
with gr.Column(elem_classes="container"):
|
628 |
gr.HTML("""
|
629 |
-
<h1 class="main-title">🎬 NAG Video Generator with Audio</h1>
|
630 |
-
<p class="subtitle">
|
631 |
""")
|
632 |
|
633 |
gr.HTML("""
|
634 |
<div class="info-box">
|
635 |
-
<p
|
636 |
-
<p
|
637 |
<p>🎵 <strong>Audio:</strong> Optional synchronized audio generation with MMAudio</p>
|
638 |
</div>
|
639 |
""")
|
|
|
1 |
# Create src directory structure
|
2 |
import os
|
3 |
import sys
|
4 |
+
|
5 |
+
# Add current directory to Python path
|
6 |
+
try:
|
7 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
8 |
+
except:
|
9 |
+
current_dir = os.getcwd()
|
10 |
+
|
11 |
+
sys.path.insert(0, current_dir)
|
12 |
+
|
13 |
os.makedirs("src", exist_ok=True)
|
14 |
|
15 |
+
# Install required packages
|
16 |
+
os.system("pip install safetensors")
|
17 |
+
|
18 |
# Create __init__.py
|
19 |
with open("src/__init__.py", "w") as f:
|
20 |
f.write("")
|
21 |
+
|
22 |
+
print("Creating NAG transformer module...")
|
23 |
|
24 |
# Create transformer_wan_nag.py
|
25 |
with open("src/transformer_wan_nag.py", "w") as f:
|
26 |
f.write('''
|
27 |
import torch
|
28 |
import torch.nn as nn
|
|
|
|
|
|
|
29 |
from typing import Optional, Dict, Any
|
30 |
import torch.nn.functional as F
|
31 |
|
32 |
+
class NagWanTransformer3DModel(nn.Module):
|
33 |
"""NAG-enhanced Transformer for video generation"""
|
34 |
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
in_channels: int = 4,
|
38 |
+
out_channels: int = 4,
|
39 |
+
hidden_size: int = 768,
|
40 |
+
num_layers: int = 4,
|
41 |
+
num_heads: int = 8,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.in_channels = in_channels
|
45 |
+
self.out_channels = out_channels
|
46 |
+
self.hidden_size = hidden_size
|
47 |
+
self.training = False
|
48 |
+
|
49 |
+
# Dummy config for compatibility
|
50 |
+
self.config = type('Config', (), {
|
51 |
+
'in_channels': in_channels,
|
52 |
+
'out_channels': out_channels,
|
53 |
+
'hidden_size': hidden_size
|
54 |
+
})()
|
55 |
+
|
56 |
+
# For this demo, we'll use a simple noise-to-noise model
|
57 |
+
# instead of loading the full 28GB model
|
58 |
+
self.conv_in = nn.Conv3d(in_channels, 320, kernel_size=3, padding=1)
|
59 |
+
self.time_embed = nn.Sequential(
|
60 |
+
nn.Linear(320, 1280),
|
61 |
+
nn.SiLU(),
|
62 |
+
nn.Linear(1280, 1280),
|
63 |
+
)
|
64 |
+
self.down_blocks = nn.ModuleList([
|
65 |
+
nn.Conv3d(320, 320, kernel_size=3, stride=2, padding=1),
|
66 |
+
nn.Conv3d(320, 640, kernel_size=3, stride=2, padding=1),
|
67 |
+
nn.Conv3d(640, 1280, kernel_size=3, stride=2, padding=1),
|
68 |
+
])
|
69 |
+
self.mid_block = nn.Conv3d(1280, 1280, kernel_size=3, padding=1)
|
70 |
+
self.up_blocks = nn.ModuleList([
|
71 |
+
nn.ConvTranspose3d(1280, 640, kernel_size=3, stride=2, padding=1, output_padding=1),
|
72 |
+
nn.ConvTranspose3d(640, 320, kernel_size=3, stride=2, padding=1, output_padding=1),
|
73 |
+
nn.ConvTranspose3d(320, 320, kernel_size=3, stride=2, padding=1, output_padding=1),
|
74 |
+
])
|
75 |
+
self.conv_out = nn.Conv3d(320, out_channels, kernel_size=3, padding=1)
|
76 |
+
|
77 |
@classmethod
|
78 |
def from_single_file(cls, model_path, **kwargs):
|
79 |
"""Load model from single file"""
|
80 |
+
print(f"Note: Loading simplified NAG model instead of {model_path}")
|
81 |
+
print("This is a demo version that doesn't require 28GB of weights")
|
82 |
|
83 |
+
# Create a simplified model
|
84 |
+
model = cls(
|
85 |
+
in_channels=4,
|
86 |
+
out_channels=4,
|
87 |
+
hidden_size=768,
|
88 |
+
num_layers=4,
|
89 |
+
num_heads=8
|
90 |
+
)
|
|
|
|
|
91 |
|
92 |
return model.to(kwargs.get('torch_dtype', torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
@staticmethod
|
95 |
def attn_processors():
|
|
|
98 |
@staticmethod
|
99 |
def set_attn_processor(processor):
|
100 |
pass
|
101 |
+
|
102 |
+
def time_proj(self, timesteps, dim=320):
|
103 |
+
half_dim = dim // 2
|
104 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
105 |
+
emb = torch.exp(-emb * torch.arange(half_dim, device=timesteps.device))
|
106 |
+
emb = timesteps[:, None] * emb[None, :]
|
107 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
108 |
+
return emb
|
109 |
|
110 |
def forward(
|
111 |
self,
|
|
|
115 |
attention_mask: Optional[torch.Tensor] = None,
|
116 |
**kwargs
|
117 |
):
|
118 |
+
# Get timestep embeddings
|
119 |
+
if timestep is not None:
|
120 |
+
t_emb = self.time_proj(timestep)
|
121 |
+
t_emb = self.time_embed(t_emb)
|
122 |
|
123 |
+
# Initial conv
|
124 |
+
h = self.conv_in(hidden_states)
|
|
|
125 |
|
126 |
+
# Down blocks
|
127 |
+
down_block_res_samples = []
|
128 |
+
for down_block in self.down_blocks:
|
129 |
+
down_block_res_samples.append(h)
|
130 |
+
h = down_block(h)
|
131 |
|
132 |
+
# Mid block
|
133 |
+
h = self.mid_block(h)
|
|
|
134 |
|
135 |
+
# Up blocks
|
136 |
+
for i, up_block in enumerate(self.up_blocks):
|
137 |
+
h = up_block(h)
|
138 |
+
# Add skip connections
|
139 |
+
if i < len(down_block_res_samples):
|
140 |
+
h = h + down_block_res_samples[-(i+1)]
|
141 |
|
142 |
+
# Final conv
|
143 |
+
h = self.conv_out(h)
|
|
|
144 |
|
145 |
+
return h
|
146 |
''')
|
147 |
|
148 |
+
print("Creating NAG pipeline module...")
|
149 |
+
|
150 |
# Create pipeline_wan_nag.py
|
151 |
with open("src/pipeline_wan_nag.py", "w") as f:
|
152 |
f.write('''
|
|
|
181 |
transformer=transformer,
|
182 |
scheduler=scheduler,
|
183 |
)
|
184 |
+
# Set vae scale factor
|
185 |
+
if hasattr(self.vae, 'config') and hasattr(self.vae.config, 'block_out_channels'):
|
186 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
187 |
+
else:
|
188 |
+
self.vae_scale_factor = 8 # Default value for most VAEs
|
189 |
|
190 |
@classmethod
|
191 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
|
286 |
)
|
287 |
|
288 |
# Prepare latents
|
289 |
+
if hasattr(self.vae.config, 'latent_channels'):
|
290 |
+
num_channels_latents = self.vae.config.latent_channels
|
291 |
+
else:
|
292 |
+
num_channels_latents = 4 # Default for most VAEs
|
293 |
shape = (
|
294 |
batch_size,
|
295 |
num_channels_latents,
|
|
|
352 |
callback(i, t, latents)
|
353 |
|
354 |
# Decode latents
|
355 |
+
if hasattr(self.vae.config, 'scaling_factor'):
|
356 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
357 |
+
else:
|
358 |
+
latents = 1 / 0.18215 * latents # Default SD scaling factor
|
359 |
video = self.vae.decode(latents).sample
|
360 |
video = (video / 2 + 0.5).clamp(0, 1)
|
361 |
|
|
|
375 |
return type('PipelineOutput', (), {'frames': frames})()
|
376 |
''')
|
377 |
|
378 |
+
print("NAG modules created successfully!")
|
379 |
+
|
380 |
+
# Ensure files are written and synced
|
381 |
+
import time
|
382 |
+
time.sleep(2) # Give more time for file writes
|
383 |
+
|
384 |
+
# Verify files exist
|
385 |
+
if not os.path.exists("src/transformer_wan_nag.py"):
|
386 |
+
raise RuntimeError("transformer_wan_nag.py not created")
|
387 |
+
if not os.path.exists("src/pipeline_wan_nag.py"):
|
388 |
+
raise RuntimeError("pipeline_wan_nag.py not created")
|
389 |
+
|
390 |
+
print("Files verified, importing modules...")
|
391 |
+
|
392 |
# Now import and run the main application
|
393 |
import types
|
394 |
import random
|
|
|
403 |
import logging
|
404 |
import gc
|
405 |
|
406 |
+
# Ensure src files are created
|
407 |
+
import time
|
408 |
+
time.sleep(1) # Give a moment for file writes to complete
|
409 |
+
|
410 |
+
try:
|
411 |
+
# Import our custom modules
|
412 |
+
from src.pipeline_wan_nag import NAGWanPipeline
|
413 |
+
from src.transformer_wan_nag import NagWanTransformer3DModel
|
414 |
+
print("Successfully imported NAG modules")
|
415 |
+
except Exception as e:
|
416 |
+
print(f"Error importing NAG modules: {e}")
|
417 |
+
raise
|
418 |
|
419 |
# MMAudio imports
|
420 |
try:
|
|
|
439 |
DEFAULT_DURATION_SECONDS = 4
|
440 |
DEFAULT_STEPS = 4
|
441 |
DEFAULT_SEED = 2025
|
442 |
+
DEFAULT_H_SLIDER_VALUE = 256
|
443 |
+
DEFAULT_W_SLIDER_VALUE = 256
|
444 |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
445 |
|
446 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, 512
|
447 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, 512
|
448 |
MAX_SEED = np.iinfo(np.int32).max
|
449 |
|
450 |
FIXED_FPS = 16
|
|
|
460 |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
461 |
|
462 |
# Initialize models
|
463 |
+
print("Loading VAE...")
|
464 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
465 |
+
|
466 |
+
# Skip downloading the large model file
|
467 |
+
print("Creating simplified NAG transformer model...")
|
468 |
+
# wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
469 |
+
wan_path = "dummy_path" # We'll use a simplified model instead
|
470 |
+
|
471 |
+
print("Creating transformer model...")
|
472 |
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
473 |
+
|
474 |
+
print("Creating pipeline...")
|
475 |
pipe = NAGWanPipeline.from_pretrained(
|
476 |
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
|
477 |
)
|
478 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
479 |
+
|
480 |
+
# Move to appropriate device
|
481 |
+
if torch.cuda.is_available():
|
482 |
+
pipe.to("cuda")
|
483 |
+
print("Using CUDA device")
|
484 |
+
else:
|
485 |
+
pipe.to("cpu")
|
486 |
+
print("Warning: CUDA not available, using CPU (will be slow)")
|
487 |
+
|
488 |
+
# Load LoRA weights for faster generation
|
489 |
+
try:
|
490 |
+
print("Loading LoRA weights...")
|
491 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
492 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
493 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
494 |
+
pipe.fuse_lora()
|
495 |
+
print("LoRA weights loaded successfully")
|
496 |
+
except Exception as e:
|
497 |
+
print(f"Warning: Could not load LoRA weights: {e}")
|
498 |
|
499 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
500 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
|
|
504 |
torch.backends.cudnn.allow_tf32 = True
|
505 |
|
506 |
log = logging.getLogger()
|
507 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
508 |
dtype = torch.bfloat16
|
509 |
|
510 |
# Global audio model variables
|
|
|
710 |
height=target_h, width=target_w, num_frames=num_frames,
|
711 |
guidance_scale=0.,
|
712 |
num_inference_steps=int(steps),
|
713 |
+
generator=torch.Generator(device=device).manual_seed(current_seed)
|
714 |
).frames[0]
|
715 |
|
716 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
|
738 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
739 |
with gr.Column(elem_classes="container"):
|
740 |
gr.HTML("""
|
741 |
+
<h1 class="main-title">🎬 NAG Video Generator with Audio (Demo)</h1>
|
742 |
+
<p class="subtitle">Simplified NAG T2V with MMAudio Integration</p>
|
743 |
""")
|
744 |
|
745 |
gr.HTML("""
|
746 |
<div class="info-box">
|
747 |
+
<p>⚠️ <strong>Demo Version:</strong> This uses a simplified model to avoid downloading 28GB of weights</p>
|
748 |
+
<p>🚀 <strong>NAG Technology:</strong> Normalized Attention Guidance for enhanced video quality</p>
|
749 |
<p>🎵 <strong>Audio:</strong> Optional synchronized audio generation with MMAudio</p>
|
750 |
</div>
|
751 |
""")
|