VEO3-Free / app.py
seawolf2357's picture
Update app.py
2d767e1 verified
raw
history blame
22.4 kB
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import torchaudio
import os
# MMAudio imports
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# Video generation model setup
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
# Audio generation model setup
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
audio_model: ModelConfig = all_model_cfg['large_44k_v2']
audio_model.download_if_needed()
setup_eval_logging()
def get_audio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
seq_cfg = audio_model.seq_cfg
net: MMAudio = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval()
net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {audio_model.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path,
synchformer_ckpt=audio_model.synchformer_ckpt,
enable_conditions=True,
mode=audio_model.mode,
bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, feature_utils, seq_cfg
audio_net, audio_feature_utils, audio_seq_cfg = get_audio_model()
# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
default_audio_prompt = ""
default_audio_negative_prompt = "music"
# CSS
custom_css = """
/* 전체 λ°°κ²½ κ·ΈλΌλ””μ–ΈνŠΈ */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
background-size: 400% 400% !important;
animation: gradientShift 15s ease infinite !important;
}
@keyframes gradientShift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* 메인 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.main-container {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.1) !important;
border-radius: 20px !important;
padding: 30px !important;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
border: 1px solid rgba(255, 255, 255, 0.18) !important;
}
/* 헀더 μŠ€νƒ€μΌ */
h1 {
background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-weight: 800 !important;
font-size: 2.5rem !important;
text-align: center !important;
margin-bottom: 2rem !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}
/* μ»΄ν¬λ„ŒνŠΈ μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.input-container, .output-container {
background: rgba(255, 255, 255, 0.08) !important;
border-radius: 15px !important;
padding: 20px !important;
margin: 10px 0 !important;
backdrop-filter: blur(5px) !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
/* μž…λ ₯ ν•„λ“œ μŠ€νƒ€μΌ */
input, textarea, .gr-box {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 10px !important;
color: #333 !important;
transition: all 0.3s ease !important;
}
input:focus, textarea:focus {
background: rgba(255, 255, 255, 1) !important;
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* λ²„νŠΌ μŠ€νƒ€μΌ */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 12px 30px !important;
border-radius: 50px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}
/* μŠ¬λΌμ΄λ” μŠ€νƒ€μΌ */
input[type="range"] {
background: transparent !important;
}
input[type="range"]::-webkit-slider-track {
background: rgba(255, 255, 255, 0.3) !important;
border-radius: 5px !important;
height: 6px !important;
}
input[type="range"]::-webkit-slider-thumb {
background: linear-gradient(135deg, #667eea, #764ba2) !important;
border: 2px solid white !important;
border-radius: 50% !important;
cursor: pointer !important;
width: 18px !important;
height: 18px !important;
-webkit-appearance: none !important;
}
/* Accordion μŠ€νƒ€μΌ */
.gr-accordion {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 10px !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
margin: 15px 0 !important;
}
/* 라벨 μŠ€νƒ€μΌ */
label {
color: #ffffff !important;
font-weight: 500 !important;
font-size: 0.95rem !important;
margin-bottom: 5px !important;
}
/* 이미지 μ—…λ‘œλ“œ μ˜μ—­ */
.image-upload {
border: 2px dashed rgba(255, 255, 255, 0.3) !important;
border-radius: 15px !important;
background: rgba(255, 255, 255, 0.05) !important;
transition: all 0.3s ease !important;
}
.image-upload:hover {
border-color: rgba(255, 255, 255, 0.5) !important;
background: rgba(255, 255, 255, 0.1) !important;
}
/* λΉ„λ””μ˜€ 좜λ ₯ μ˜μ—­ */
video {
border-radius: 15px !important;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}
/* Examples μ„Ήμ…˜ μŠ€νƒ€μΌ */
.gr-examples {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 15px !important;
padding: 20px !important;
margin-top: 20px !important;
}
/* Checkbox μŠ€νƒ€μΌ */
input[type="checkbox"] {
accent-color: #667eea !important;
}
/* Radio λ²„νŠΌ μŠ€νƒ€μΌ */
input[type="radio"] {
accent-color: #667eea !important;
}
/* λ°˜μ‘ν˜• μ• λ‹ˆλ©”μ΄μ…˜ */
@media (max-width: 768px) {
h1 { font-size: 2rem !important; }
.main-container { padding: 20px !important; }
}
"""
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength,
progress):
base_duration = 60
if steps > 4 and duration_seconds > 2:
base_duration = 90
elif steps > 4 or duration_seconds > 2:
base_duration = 75
# Add extra time for audio generation
if audio_mode == "Enable Audio":
base_duration += 60
return base_duration
@torch.inference_mode()
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength):
"""Add audio to video using MMAudio"""
rng = torch.Generator(device=device)
if audio_seed >= 0:
rng.manual_seed(audio_seed)
else:
rng.seed()
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
video_info = load_video(video_path, duration_sec)
clip_frames = video_info.clip_frames.unsqueeze(0)
sync_frames = video_info.sync_frames.unsqueeze(0)
duration = video_info.duration_sec
audio_seq_cfg.duration = duration
audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [audio_prompt],
negative_text=[audio_negative_prompt],
feature_utils=audio_feature_utils,
net=audio_net,
fm=fm,
rng=rng,
cfg_strength=audio_cfg_strength)
audio = audios.float().cpu()[0]
# Save video with audio
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
return video_with_audio_path
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
# Generate video
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
# Save video without audio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
# Generate audio if enabled
video_with_audio_path = None
if audio_mode == "Enable Audio":
progress(0.5, desc="Generating audio...")
video_with_audio_path = add_audio_to_video(
video_path, duration_seconds,
audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength
)
return video_path, video_with_audio_path, current_seed
def update_audio_visibility(audio_mode):
"""Update visibility of audio-related components"""
return gr.update(visible=(audio_mode == "Enable Audio"))
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# ✨ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA + Audio")
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
input_image_component = gr.Image(
type="pil",
label="πŸ–ΌοΈ Input Image (auto-resized to target H/W)",
elem_classes=["image-upload"]
)
prompt_input = gr.Textbox(
label="✏️ Prompt",
value=default_prompt_i2v,
lines=2
)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2,
label="⏱️ Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
# Audio mode radio button
audio_mode = gr.Radio(
choices=["Video Only", "Enable Audio"],
value="Video Only",
label="🎡 Audio Mode",
info="Enable to add audio to your generated video"
)
# Audio settings (initially hidden)
with gr.Column(visible=False) as audio_settings:
audio_prompt = gr.Textbox(
label="🎡 Audio Prompt",
value=default_audio_prompt,
placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')",
lines=2
)
audio_negative_prompt = gr.Textbox(
label="❌ Audio Negative Prompt",
value=default_audio_negative_prompt,
lines=2
)
with gr.Row():
audio_seed = gr.Number(
label="🎲 Audio Seed",
value=-1,
precision=0,
minimum=-1
)
audio_steps = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=25,
label="πŸš€ Audio Steps"
)
audio_cfg_strength = gr.Slider(
minimum=1.0,
maximum=10.0,
step=0.5,
value=4.5,
label="🎯 Audio Guidance"
)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(
label="❌ Negative Prompt",
value=default_negative_prompt,
lines=3
)
seed_input = gr.Slider(
label="🎲 Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="πŸ”€ Randomize seed",
value=True,
interactive=True
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"πŸ“ Output Height (multiple of {MOD_VALUE})"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"πŸ“ Output Width (multiple of {MOD_VALUE})"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=4,
label="πŸš€ Inference Steps"
)
guidance_scale_input = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="🎯 Guidance Scale",
visible=False
)
generate_button = gr.Button(
"🎬 Generate Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(elem_classes=["output-container"]):
video_output = gr.Video(
label="πŸŽ₯ Generated Video",
autoplay=True,
interactive=False
)
video_with_audio_output = gr.Video(
label="πŸŽ₯ Generated Video with Audio",
autoplay=True,
interactive=False,
visible=False
)
# Event handlers
audio_mode.change(
fn=update_audio_visibility,
inputs=[audio_mode],
outputs=[audio_settings, video_with_audio_output]
)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[video_output, video_with_audio_output, seed_input]
)
with gr.Column():
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512,
default_negative_prompt, 2, 1.0, 4, 42, False,
"Video Only", "", default_audio_negative_prompt, -1, 25, 4.5],
["forg.jpg", "the frog jumps around", 448, 832,
default_negative_prompt, 2, 1.0, 4, 42, False,
"Enable Audio", "frog croaking, water splashing", default_audio_negative_prompt, -1, 25, 4.5],
],
inputs=ui_inputs,
outputs=[video_output, video_with_audio_output, seed_input],
fn=generate_video,
cache_examples="lazy",
label="🌟 Example Gallery"
)
if __name__ == "__main__":
demo.queue().launch()