|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring |
|
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput |
|
from diffusers.pipelines.wan.pipeline_wan import WanPipeline |
|
|
|
from src.attention_wan_nag import NAGWanAttnProcessor2_0 |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class NAGWanPipeline(WanPipeline): |
|
@property |
|
def do_normalized_attention_guidance(self): |
|
return self._nag_scale > 1 |
|
|
|
def _set_nag_attn_processor(self, nag_scale, nag_tau, nag_alpha): |
|
attn_procs = {} |
|
for name, origin_attn_proc in self.transformer.attn_processors.items(): |
|
if "attn2" in name: |
|
attn_procs[name] = NAGWanAttnProcessor2_0(nag_scale=nag_scale, nag_tau=nag_tau, nag_alpha=nag_alpha) |
|
else: |
|
attn_procs[name] = origin_attn_proc |
|
self.transformer.set_attn_processor(attn_procs) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
height: int = 480, |
|
width: int = 832, |
|
num_frames: int = 81, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 5.0, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "np", |
|
return_dict: bool = True, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
|
|
nag_scale: float = 1.0, |
|
nag_tau: float = 2.5, |
|
nag_alpha: float = 0.25, |
|
nag_negative_prompt: str = None, |
|
nag_negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, defaults to `480`): |
|
The height in pixels of the generated image. |
|
width (`int`, defaults to `832`): |
|
The width in pixels of the generated image. |
|
num_frames (`int`, defaults to `81`): |
|
The number of frames in the generated video. |
|
num_inference_steps (`int`, defaults to `50`): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, defaults to `5.0`): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple. |
|
attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of |
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: |
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a |
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`): |
|
The dtype to use for the torch.amp.autocast. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~WanPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where |
|
the first element is a list with the generated images and the second element is a list of `bool`s |
|
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
negative_prompt, |
|
height, |
|
width, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._attention_kwargs = attention_kwargs |
|
self._current_timestep = None |
|
self._interrupt = False |
|
self._nag_scale = nag_scale |
|
|
|
device = self._execution_device |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
if self.do_normalized_attention_guidance: |
|
if nag_negative_prompt_embeds is None: |
|
if nag_negative_prompt is None: |
|
if self.do_classifier_free_guidance: |
|
nag_negative_prompt_embeds = negative_prompt_embeds |
|
else: |
|
nag_negative_prompt = negative_prompt or "" |
|
|
|
if nag_negative_prompt is not None: |
|
nag_negative_prompt_embeds = self.encode_prompt( |
|
prompt=nag_negative_prompt, |
|
do_classifier_free_guidance=False, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
)[0] |
|
|
|
if self.do_normalized_attention_guidance: |
|
prompt_embeds = torch.cat([prompt_embeds, nag_negative_prompt_embeds], dim=0) |
|
|
|
transformer_dtype = self.transformer.dtype |
|
prompt_embeds = prompt_embeds.to(transformer_dtype) |
|
if negative_prompt_embeds is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
num_frames, |
|
torch.float32, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
|
|
if self.do_normalized_attention_guidance: |
|
origin_attn_procs = self.transformer.attn_processors |
|
self._set_nag_attn_processor(nag_scale, nag_tau, nag_alpha) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
self._current_timestep = t |
|
latent_model_input = latents.to(transformer_dtype) |
|
timestep = t.expand(latents.shape[0]) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.do_classifier_free_guidance: |
|
noise_uncond = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
self._current_timestep = None |
|
|
|
if not output_type == "latent": |
|
latents = latents.to(self.vae.dtype) |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean) |
|
.view(1, self.vae.config.z_dim, 1, 1, 1) |
|
.to(latents.device, latents.dtype) |
|
) |
|
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( |
|
latents.device, latents.dtype |
|
) |
|
latents = latents / latents_std + latents_mean |
|
video = self.vae.decode(latents, return_dict=False)[0] |
|
video = self.video_processor.postprocess_video(video, output_type=output_type) |
|
else: |
|
video = latents |
|
|
|
if self.do_normalized_attention_guidance: |
|
self.transformer.set_attn_processor(origin_attn_procs) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return WanPipelineOutput(frames=video) |
|
|