|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel |
|
from diffusers.models.attention_processor import AttentionProcessor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class NagWanTransformer3DModel(WanTransformer3DModel): |
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: torch.LongTensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_hidden_states_image: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
batch_size, num_channels, num_frames, height, width = hidden_states.shape |
|
p_t, p_h, p_w = self.config.patch_size |
|
post_patch_num_frames = num_frames // p_t |
|
post_patch_height = height // p_h |
|
post_patch_width = width // p_w |
|
|
|
rotary_emb = self.rope(hidden_states) |
|
|
|
hidden_states = self.patch_embedding(hidden_states) |
|
hidden_states = hidden_states.flatten(2).transpose(1, 2) |
|
|
|
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder( |
|
timestep, encoder_hidden_states, encoder_hidden_states_image |
|
) |
|
timestep_proj = timestep_proj.unflatten(1, (6, -1)) |
|
|
|
if encoder_hidden_states_image is not None: |
|
bs_encoder_hidden_states = len(encoder_hidden_states) |
|
bs_encoder_hidden_states_image = len(encoder_hidden_states_image) |
|
bs_scale = bs_encoder_hidden_states / bs_encoder_hidden_states_image |
|
assert bs_scale in [1, 2, 3] |
|
if bs_scale != 1: |
|
encoder_hidden_states_image = encoder_hidden_states_image.tile(int(bs_scale), 1, 1) |
|
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1) |
|
|
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
for block in self.blocks: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb |
|
) |
|
else: |
|
for block in self.blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb) |
|
|
|
|
|
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
shift = shift.to(hidden_states.device) |
|
scale = scale.to(hidden_states.device) |
|
|
|
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 |
|
) |
|
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) |
|
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |