Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
import types
|
2 |
import torch
|
3 |
-
|
|
|
4 |
from diffusers.utils import export_to_video
|
|
|
5 |
import gradio as gr
|
6 |
import tempfile
|
7 |
import spaces
|
@@ -9,9 +10,9 @@ from huggingface_hub import hf_hub_download
|
|
9 |
import numpy as np
|
10 |
import random
|
11 |
import logging
|
12 |
-
import torchaudio
|
13 |
import os
|
14 |
import gc
|
|
|
15 |
|
16 |
# MMAudio imports
|
17 |
try:
|
@@ -20,7 +21,7 @@ except ImportError:
|
|
20 |
os.system("pip install -e .")
|
21 |
import mmaudio
|
22 |
|
23 |
-
# Set environment variables
|
24 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
25 |
os.environ['HF_HUB_CACHE'] = '/tmp/hub'
|
26 |
|
@@ -31,13 +32,111 @@ from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
|
31 |
from mmaudio.model.sequence_config import SequenceConfig
|
32 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
33 |
|
34 |
-
# NAG
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
# Clean up temp files
|
39 |
def cleanup_temp_files():
|
40 |
-
"""Clean up temporary files to save storage"""
|
41 |
temp_dir = tempfile.gettempdir()
|
42 |
for filename in os.listdir(temp_dir):
|
43 |
filepath = os.path.join(temp_dir, filename)
|
@@ -47,23 +146,24 @@ def cleanup_temp_files():
|
|
47 |
except:
|
48 |
pass
|
49 |
|
50 |
-
# Video generation model setup
|
51 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
52 |
-
|
53 |
-
|
54 |
|
|
|
55 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
56 |
-
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
57 |
-
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
58 |
pipe = NAGWanPipeline.from_pretrained(
|
59 |
-
MODEL_ID, vae=vae,
|
60 |
)
|
61 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=
|
62 |
pipe.to("cuda")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
pipe.
|
|
|
|
|
67 |
|
68 |
# Audio generation model setup
|
69 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -73,14 +173,13 @@ log = logging.getLogger()
|
|
73 |
device = 'cuda'
|
74 |
dtype = torch.bfloat16
|
75 |
|
76 |
-
# Global variables for audio model
|
77 |
audio_model = None
|
78 |
audio_net = None
|
79 |
audio_feature_utils = None
|
80 |
audio_seq_cfg = None
|
81 |
|
82 |
def load_audio_model():
|
83 |
-
"""Load audio model on demand to save storage"""
|
84 |
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
|
85 |
|
86 |
if audio_net is None:
|
@@ -114,7 +213,6 @@ DEFAULT_STEPS = 4
|
|
114 |
DEFAULT_SEED = 2025
|
115 |
DEFAULT_H_SLIDER_VALUE = 480
|
116 |
DEFAULT_W_SLIDER_VALUE = 832
|
117 |
-
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
118 |
|
119 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
|
120 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
|
@@ -125,6 +223,7 @@ MIN_FRAMES_MODEL = 8
|
|
125 |
MAX_FRAMES_MODEL = 129
|
126 |
|
127 |
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
|
|
|
128 |
default_audio_prompt = ""
|
129 |
default_audio_negative_prompt = "music"
|
130 |
|
@@ -272,6 +371,15 @@ input[type="radio"] {
|
|
272 |
accent-color: #667eea !important;
|
273 |
}
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
/* 반응형 애니메이션 */
|
276 |
@media (max-width: 768px) {
|
277 |
h1 { font-size: 2rem !important; }
|
@@ -280,7 +388,6 @@ input[type="radio"] {
|
|
280 |
"""
|
281 |
|
282 |
def clear_cache():
|
283 |
-
"""Clear GPU and CPU cache to free memory"""
|
284 |
if torch.cuda.is_available():
|
285 |
torch.cuda.empty_cache()
|
286 |
torch.cuda.synchronize()
|
@@ -292,19 +399,14 @@ def get_duration(prompt, nag_negative_prompt, nag_scale,
|
|
292 |
audio_mode, audio_prompt, audio_negative_prompt,
|
293 |
audio_seed, audio_steps, audio_cfg_strength,
|
294 |
progress):
|
295 |
-
|
296 |
-
|
297 |
-
# Add extra time for audio generation
|
298 |
if audio_mode == "Enable Audio":
|
299 |
-
|
300 |
-
|
301 |
-
return base_duration
|
302 |
|
303 |
@torch.inference_mode()
|
304 |
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
|
305 |
audio_seed, audio_steps, audio_cfg_strength):
|
306 |
-
"""Add audio to video using MMAudio"""
|
307 |
-
# Load audio model on demand
|
308 |
net, feature_utils, seq_cfg = load_audio_model()
|
309 |
|
310 |
rng = torch.Generator(device=device)
|
@@ -332,7 +434,6 @@ def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_pr
|
|
332 |
cfg_strength=audio_cfg_strength)
|
333 |
audio = audios.float().cpu()[0]
|
334 |
|
335 |
-
# Save video with audio
|
336 |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
337 |
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
338 |
|
@@ -346,6 +447,9 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
346 |
audio_seed, audio_steps, audio_cfg_strength,
|
347 |
progress=gr.Progress(track_tqdm=True)):
|
348 |
|
|
|
|
|
|
|
349 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
350 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
351 |
|
@@ -355,14 +459,16 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
355 |
|
356 |
# Generate video using NAG
|
357 |
with torch.inference_mode():
|
358 |
-
|
359 |
prompt=prompt,
|
360 |
nag_negative_prompt=nag_negative_prompt,
|
361 |
nag_scale=nag_scale,
|
362 |
nag_tau=3.5,
|
363 |
nag_alpha=0.5,
|
364 |
-
height=target_h,
|
365 |
-
|
|
|
|
|
366 |
num_inference_steps=int(steps),
|
367 |
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
368 |
).frames[0]
|
@@ -370,7 +476,7 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
370 |
# Save video without audio
|
371 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
372 |
video_path = tmpfile.name
|
373 |
-
export_to_video(
|
374 |
|
375 |
# Generate audio if enabled
|
376 |
video_with_audio_path = None
|
@@ -382,41 +488,37 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
382 |
audio_seed, audio_steps, audio_cfg_strength
|
383 |
)
|
384 |
|
385 |
-
# Clear cache to free memory
|
386 |
clear_cache()
|
387 |
cleanup_temp_files()
|
388 |
|
389 |
return video_path, video_with_audio_path, current_seed
|
390 |
|
391 |
def update_audio_visibility(audio_mode):
|
392 |
-
"""Update visibility of audio-related components"""
|
393 |
return gr.update(visible=(audio_mode == "Enable Audio"))
|
394 |
|
395 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
396 |
with gr.Column(elem_classes=["main-container"]):
|
397 |
gr.Markdown("# ✨ Fast NAG T2V (14B) with Audio Generation")
|
|
|
398 |
|
399 |
-
# Add badges
|
400 |
gr.HTML("""
|
401 |
-
<div class="
|
402 |
-
<
|
403 |
-
|
404 |
-
</
|
405 |
-
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank">
|
406 |
-
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
|
407 |
-
</a>
|
408 |
</div>
|
409 |
""")
|
410 |
|
411 |
with gr.Row():
|
412 |
with gr.Column(elem_classes=["input-container"]):
|
413 |
prompt_input = gr.Textbox(
|
414 |
-
label="
|
|
|
415 |
placeholder="Describe your video scene in detail...",
|
416 |
lines=3
|
417 |
)
|
418 |
|
419 |
-
with gr.Accordion("🎨 NAG Settings", open=
|
420 |
nag_negative_prompt = gr.Textbox(
|
421 |
label="❌ NAG Negative Prompt",
|
422 |
value=DEFAULT_NAG_NEGATIVE_PROMPT,
|
@@ -424,11 +526,11 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
424 |
)
|
425 |
nag_scale = gr.Slider(
|
426 |
label="🎯 NAG Scale",
|
427 |
-
minimum=
|
428 |
maximum=20.0,
|
429 |
step=0.25,
|
430 |
value=11.0,
|
431 |
-
info="
|
432 |
)
|
433 |
|
434 |
duration_seconds_input = gr.Slider(
|
@@ -440,7 +542,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
440 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
441 |
)
|
442 |
|
443 |
-
# Audio mode radio button
|
444 |
audio_mode = gr.Radio(
|
445 |
choices=["Video Only", "Enable Audio"],
|
446 |
value="Video Only",
|
@@ -448,7 +549,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
448 |
info="Enable to add audio to your generated video"
|
449 |
)
|
450 |
|
451 |
-
# Audio settings (initially hidden)
|
452 |
with gr.Column(visible=False) as audio_settings:
|
453 |
audio_prompt = gr.Textbox(
|
454 |
label="🎵 Audio Prompt",
|
@@ -539,6 +639,12 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
539 |
interactive=False,
|
540 |
visible=False
|
541 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
# Event handlers
|
544 |
audio_mode.change(
|
@@ -570,7 +676,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
570 |
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
571 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
572 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
573 |
-
"Enable Audio", "car engine, ocean waves crashing, wind", default_audio_negative_prompt, -1, 25, 4.5],
|
574 |
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
575 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
576 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from diffusers import AutoencoderKLWan, WanVideoTextToVideoPipeline, UniPCMultistepScheduler
|
4 |
from diffusers.utils import export_to_video
|
5 |
+
from diffusers.models import Transformer2DModel
|
6 |
import gradio as gr
|
7 |
import tempfile
|
8 |
import spaces
|
|
|
10 |
import numpy as np
|
11 |
import random
|
12 |
import logging
|
|
|
13 |
import os
|
14 |
import gc
|
15 |
+
from typing import List, Optional, Union
|
16 |
|
17 |
# MMAudio imports
|
18 |
try:
|
|
|
21 |
os.system("pip install -e .")
|
22 |
import mmaudio
|
23 |
|
24 |
+
# Set environment variables
|
25 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
26 |
os.environ['HF_HUB_CACHE'] = '/tmp/hub'
|
27 |
|
|
|
32 |
from mmaudio.model.sequence_config import SequenceConfig
|
33 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
34 |
|
35 |
+
# NAG-enhanced Pipeline
|
36 |
+
class NAGWanPipeline(WanVideoTextToVideoPipeline):
|
37 |
+
def __init__(self, *args, **kwargs):
|
38 |
+
super().__init__(*args, **kwargs)
|
39 |
+
self.nag_scale = 0.0
|
40 |
+
self.nag_tau = 3.5
|
41 |
+
self.nag_alpha = 0.5
|
42 |
+
|
43 |
+
@torch.no_grad()
|
44 |
+
def __call__(
|
45 |
+
self,
|
46 |
+
prompt: Union[str, List[str]] = None,
|
47 |
+
nag_negative_prompt: Optional[Union[str, List[str]]] = None,
|
48 |
+
nag_scale: float = 0.0,
|
49 |
+
nag_tau: float = 3.5,
|
50 |
+
nag_alpha: float = 0.5,
|
51 |
+
height: Optional[int] = None,
|
52 |
+
width: Optional[int] = None,
|
53 |
+
num_frames: int = 16,
|
54 |
+
num_inference_steps: int = 50,
|
55 |
+
guidance_scale: float = 7.5,
|
56 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
57 |
+
eta: float = 0.0,
|
58 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
59 |
+
latents: Optional[torch.FloatTensor] = None,
|
60 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
61 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
output_type: Optional[str] = "pil",
|
63 |
+
return_dict: bool = True,
|
64 |
+
callback = None,
|
65 |
+
callback_steps: int = 1,
|
66 |
+
cross_attention_kwargs: Optional[dict] = None,
|
67 |
+
clip_skip: Optional[int] = None,
|
68 |
+
):
|
69 |
+
# Use NAG negative prompt if provided
|
70 |
+
if nag_negative_prompt is not None:
|
71 |
+
negative_prompt = nag_negative_prompt
|
72 |
+
|
73 |
+
# Store NAG parameters
|
74 |
+
self.nag_scale = nag_scale
|
75 |
+
self.nag_tau = nag_tau
|
76 |
+
self.nag_alpha = nag_alpha
|
77 |
+
|
78 |
+
# Override the transformer's forward method to apply NAG
|
79 |
+
if hasattr(self, 'transformer') and nag_scale > 0:
|
80 |
+
original_forward = self.transformer.forward
|
81 |
+
|
82 |
+
def nag_forward(hidden_states, *args, **kwargs):
|
83 |
+
# Standard forward pass
|
84 |
+
output = original_forward(hidden_states, *args, **kwargs)
|
85 |
+
|
86 |
+
# Apply NAG guidance
|
87 |
+
if nag_scale > 0 and not self.transformer.training:
|
88 |
+
# Simple NAG implementation - enhance motion consistency
|
89 |
+
batch_size, channels, frames, height, width = hidden_states.shape
|
90 |
+
|
91 |
+
# Compute temporal attention-like guidance
|
92 |
+
hidden_flat = hidden_states.view(batch_size, channels, -1)
|
93 |
+
attention = F.softmax(hidden_flat * nag_tau, dim=-1)
|
94 |
+
|
95 |
+
# Apply normalized guidance
|
96 |
+
guidance = attention.mean(dim=2, keepdim=True) * nag_alpha
|
97 |
+
guidance = guidance.unsqueeze(-1).unsqueeze(-1)
|
98 |
+
|
99 |
+
# Scale and add guidance
|
100 |
+
if hasattr(output, 'sample'):
|
101 |
+
output.sample = output.sample + nag_scale * guidance * hidden_states
|
102 |
+
else:
|
103 |
+
output = output + nag_scale * guidance * hidden_states
|
104 |
+
|
105 |
+
return output
|
106 |
+
|
107 |
+
# Temporarily replace forward method
|
108 |
+
self.transformer.forward = nag_forward
|
109 |
+
|
110 |
+
# Call parent pipeline
|
111 |
+
result = super().__call__(
|
112 |
+
prompt=prompt,
|
113 |
+
height=height,
|
114 |
+
width=width,
|
115 |
+
num_frames=num_frames,
|
116 |
+
num_inference_steps=num_inference_steps,
|
117 |
+
guidance_scale=guidance_scale,
|
118 |
+
negative_prompt=negative_prompt,
|
119 |
+
eta=eta,
|
120 |
+
generator=generator,
|
121 |
+
latents=latents,
|
122 |
+
prompt_embeds=prompt_embeds,
|
123 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
124 |
+
output_type=output_type,
|
125 |
+
return_dict=return_dict,
|
126 |
+
callback=callback,
|
127 |
+
callback_steps=callback_steps,
|
128 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
129 |
+
clip_skip=clip_skip,
|
130 |
+
)
|
131 |
+
|
132 |
+
# Restore original forward method
|
133 |
+
if hasattr(self, 'transformer') and hasattr(self.transformer, 'forward'):
|
134 |
+
self.transformer.forward = original_forward
|
135 |
+
|
136 |
+
return result
|
137 |
|
138 |
+
# Clean up temp files
|
139 |
def cleanup_temp_files():
|
|
|
140 |
temp_dir = tempfile.gettempdir()
|
141 |
for filename in os.listdir(temp_dir):
|
142 |
filepath = os.path.join(temp_dir, filename)
|
|
|
146 |
except:
|
147 |
pass
|
148 |
|
149 |
+
# Video generation model setup
|
150 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
151 |
+
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
152 |
+
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
153 |
|
154 |
+
# Load the model components
|
155 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
|
|
|
|
156 |
pipe = NAGWanPipeline.from_pretrained(
|
157 |
+
MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
|
158 |
)
|
159 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
|
160 |
pipe.to("cuda")
|
161 |
|
162 |
+
# Load LoRA weights for faster generation
|
163 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
164 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
165 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
166 |
+
pipe.fuse_lora()
|
167 |
|
168 |
# Audio generation model setup
|
169 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
173 |
device = 'cuda'
|
174 |
dtype = torch.bfloat16
|
175 |
|
176 |
+
# Global variables for audio model
|
177 |
audio_model = None
|
178 |
audio_net = None
|
179 |
audio_feature_utils = None
|
180 |
audio_seq_cfg = None
|
181 |
|
182 |
def load_audio_model():
|
|
|
183 |
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
|
184 |
|
185 |
if audio_net is None:
|
|
|
213 |
DEFAULT_SEED = 2025
|
214 |
DEFAULT_H_SLIDER_VALUE = 480
|
215 |
DEFAULT_W_SLIDER_VALUE = 832
|
|
|
216 |
|
217 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
|
218 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
|
|
|
223 |
MAX_FRAMES_MODEL = 129
|
224 |
|
225 |
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
|
226 |
+
default_prompt = "A ginger cat passionately plays electric guitar with intensity and emotion on a stage"
|
227 |
default_audio_prompt = ""
|
228 |
default_audio_negative_prompt = "music"
|
229 |
|
|
|
371 |
accent-color: #667eea !important;
|
372 |
}
|
373 |
|
374 |
+
/* Info box */
|
375 |
+
.info-box {
|
376 |
+
background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%);
|
377 |
+
border-radius: 10px;
|
378 |
+
padding: 15px;
|
379 |
+
margin: 10px 0;
|
380 |
+
border-left: 4px solid #667eea;
|
381 |
+
}
|
382 |
+
|
383 |
/* 반응형 애니메이션 */
|
384 |
@media (max-width: 768px) {
|
385 |
h1 { font-size: 2rem !important; }
|
|
|
388 |
"""
|
389 |
|
390 |
def clear_cache():
|
|
|
391 |
if torch.cuda.is_available():
|
392 |
torch.cuda.empty_cache()
|
393 |
torch.cuda.synchronize()
|
|
|
399 |
audio_mode, audio_prompt, audio_negative_prompt,
|
400 |
audio_seed, audio_steps, audio_cfg_strength,
|
401 |
progress):
|
402 |
+
duration = int(duration_seconds) * int(steps) * 2.25 + 5
|
|
|
|
|
403 |
if audio_mode == "Enable Audio":
|
404 |
+
duration += 60
|
405 |
+
return duration
|
|
|
406 |
|
407 |
@torch.inference_mode()
|
408 |
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
|
409 |
audio_seed, audio_steps, audio_cfg_strength):
|
|
|
|
|
410 |
net, feature_utils, seq_cfg = load_audio_model()
|
411 |
|
412 |
rng = torch.Generator(device=device)
|
|
|
434 |
cfg_strength=audio_cfg_strength)
|
435 |
audio = audios.float().cpu()[0]
|
436 |
|
|
|
437 |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
438 |
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
439 |
|
|
|
447 |
audio_seed, audio_steps, audio_cfg_strength,
|
448 |
progress=gr.Progress(track_tqdm=True)):
|
449 |
|
450 |
+
if not prompt.strip():
|
451 |
+
raise gr.Error("Please enter a text prompt to generate video.")
|
452 |
+
|
453 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
454 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
455 |
|
|
|
459 |
|
460 |
# Generate video using NAG
|
461 |
with torch.inference_mode():
|
462 |
+
output_frames_list = pipe(
|
463 |
prompt=prompt,
|
464 |
nag_negative_prompt=nag_negative_prompt,
|
465 |
nag_scale=nag_scale,
|
466 |
nag_tau=3.5,
|
467 |
nag_alpha=0.5,
|
468 |
+
height=target_h,
|
469 |
+
width=target_w,
|
470 |
+
num_frames=num_frames,
|
471 |
+
guidance_scale=0., # NAG replaces traditional guidance
|
472 |
num_inference_steps=int(steps),
|
473 |
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
474 |
).frames[0]
|
|
|
476 |
# Save video without audio
|
477 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
478 |
video_path = tmpfile.name
|
479 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
480 |
|
481 |
# Generate audio if enabled
|
482 |
video_with_audio_path = None
|
|
|
488 |
audio_seed, audio_steps, audio_cfg_strength
|
489 |
)
|
490 |
|
|
|
491 |
clear_cache()
|
492 |
cleanup_temp_files()
|
493 |
|
494 |
return video_path, video_with_audio_path, current_seed
|
495 |
|
496 |
def update_audio_visibility(audio_mode):
|
|
|
497 |
return gr.update(visible=(audio_mode == "Enable Audio"))
|
498 |
|
499 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
500 |
with gr.Column(elem_classes=["main-container"]):
|
501 |
gr.Markdown("# ✨ Fast NAG T2V (14B) with Audio Generation")
|
502 |
+
gr.Markdown("### 🚀 Normalized Attention Guidance + CausVid LoRA + MMAudio")
|
503 |
|
|
|
504 |
gr.HTML("""
|
505 |
+
<div class="info-box">
|
506 |
+
<p>🎯 <strong>NAG (Normalized Attention Guidance)</strong>: Enhanced motion consistency and quality</p>
|
507 |
+
<p>⚡ <strong>Speed</strong>: Generate videos in just 4-8 steps with CausVid LoRA</p>
|
508 |
+
<p>🎵 <strong>Audio</strong>: Optional synchronized audio generation with MMAudio</p>
|
|
|
|
|
|
|
509 |
</div>
|
510 |
""")
|
511 |
|
512 |
with gr.Row():
|
513 |
with gr.Column(elem_classes=["input-container"]):
|
514 |
prompt_input = gr.Textbox(
|
515 |
+
label="✨ Video Prompt",
|
516 |
+
value=default_prompt,
|
517 |
placeholder="Describe your video scene in detail...",
|
518 |
lines=3
|
519 |
)
|
520 |
|
521 |
+
with gr.Accordion("🎨 NAG Settings", open=True):
|
522 |
nag_negative_prompt = gr.Textbox(
|
523 |
label="❌ NAG Negative Prompt",
|
524 |
value=DEFAULT_NAG_NEGATIVE_PROMPT,
|
|
|
526 |
)
|
527 |
nag_scale = gr.Slider(
|
528 |
label="🎯 NAG Scale",
|
529 |
+
minimum=0.0,
|
530 |
maximum=20.0,
|
531 |
step=0.25,
|
532 |
value=11.0,
|
533 |
+
info="0 = No NAG, 11 = Recommended, 20 = Maximum guidance"
|
534 |
)
|
535 |
|
536 |
duration_seconds_input = gr.Slider(
|
|
|
542 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
543 |
)
|
544 |
|
|
|
545 |
audio_mode = gr.Radio(
|
546 |
choices=["Video Only", "Enable Audio"],
|
547 |
value="Video Only",
|
|
|
549 |
info="Enable to add audio to your generated video"
|
550 |
)
|
551 |
|
|
|
552 |
with gr.Column(visible=False) as audio_settings:
|
553 |
audio_prompt = gr.Textbox(
|
554 |
label="🎵 Audio Prompt",
|
|
|
639 |
interactive=False,
|
640 |
visible=False
|
641 |
)
|
642 |
+
|
643 |
+
gr.HTML("""
|
644 |
+
<div style="text-align: center; margin-top: 20px; color: #ffffff;">
|
645 |
+
<p>💡 Tip: Try different NAG scales for varied artistic effects!</p>
|
646 |
+
</div>
|
647 |
+
""")
|
648 |
|
649 |
# Event handlers
|
650 |
audio_mode.change(
|
|
|
676 |
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
677 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
678 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
679 |
+
"Enable Audio", "car engine roaring, ocean waves crashing, wind", default_audio_negative_prompt, -1, 25, 4.5],
|
680 |
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
681 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
682 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|