from typing import Optional import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention from ftfy import apply_plan class NAGWanAttnProcessor2_0: def __init__(self, nag_scale=1.0, nag_tau=2.5, nag_alpha=0.25): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") self.nag_scale = nag_scale self.nag_tau = nag_tau self.nag_alpha = nag_alpha def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: apply_guidance = self.nag_scale > 1 and encoder_hidden_states is not None if apply_guidance: if len(encoder_hidden_states) == 2 * len(hidden_states): batch_size = len(hidden_states) else: apply_guidance = False encoder_hidden_states_img = None if attn.add_k_proj is not None: encoder_hidden_states_img = encoder_hidden_states[:, :257] encoder_hidden_states = encoder_hidden_states[:, 257:] if apply_guidance: encoder_hidden_states_img = encoder_hidden_states_img[:batch_size] if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) if rotary_emb is not None: def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2))) x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) return x_out.type_as(hidden_states) query = apply_rotary_emb(query, rotary_emb) key = apply_rotary_emb(key, rotary_emb) # I2V task hidden_states_img = None if encoder_hidden_states_img is not None: key_img = attn.add_k_proj(encoder_hidden_states_img) key_img = attn.norm_added_k(key_img) value_img = attn.add_v_proj(encoder_hidden_states_img) key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) hidden_states_img = F.scaled_dot_product_attention( query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False ) hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) hidden_states_img = hidden_states_img.type_as(query) if apply_guidance: key, key_negative = torch.chunk(key, 2, dim=0) value, value_negative = torch.chunk(value, 2, dim=0) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.type_as(query) if apply_guidance: hidden_states_negative = F.scaled_dot_product_attention( query, key_negative, value_negative, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_negative = hidden_states_negative.transpose(1, 2).flatten(2, 3) hidden_states_negative = hidden_states_negative.type_as(query) hidden_states_positive = hidden_states hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1) norm_positive = torch.norm(hidden_states_positive, p=1, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) norm_guidance = torch.norm(hidden_states_guidance, p=1, dim=-1, keepdim=True).expand(*hidden_states_guidance.shape) scale = norm_guidance / norm_positive scale = torch.nan_to_num(scale, 10) hidden_states_guidance[scale > self.nag_tau] = \ hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha) if hidden_states_img is not None: hidden_states = hidden_states + hidden_states_img hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states