File size: 20,270 Bytes
e4aac34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import gradio as gr
import io
from PIL import Image, ImageDraw, ImageFont
import spaces
from typing import Dict, List, Any, Optional, Tuple
from ultralytics import YOLO

from detection_model import DetectionModel
from color_mapper import ColorMapper
from visualization_helper import VisualizationHelper
from evaluation_metrics import EvaluationMetrics


color_mapper = ColorMapper()
model_instances = {}

@spaces.GPU
def process_image(image, model_instance, confidence_threshold, filter_classes=None):
    """
    Process an image for object detection
    
    Args:
        image: Input image (numpy array or PIL Image)
        model_instance: DetectionModel instance to use
        confidence_threshold: Confidence threshold for detection
        filter_classes: Optional list of classes to filter results
        
    Returns:
        Tuple of (result_image, result_text, stats_data)
    """
    # initialize key variables
    result = None
    stats = {}
    temp_path = None
    
    try:
        # update confidence threshold
        model_instance.confidence = confidence_threshold
        
        # processing input image
        if isinstance(image, np.ndarray):
            # Convert BGR to RGB if needed
            if image.shape[2] == 3:
                image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            else:
                image_rgb = image
            pil_image = Image.fromarray(image_rgb)
        elif image is None:
            return None, "No image provided. Please upload an image.", {}
        else:
            pil_image = image
        
        # store temp files
        import uuid
        import tempfile
        
        temp_dir = tempfile.gettempdir()  # use system temp directory
        temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
        temp_path = os.path.join(temp_dir, temp_filename)
        pil_image.save(temp_path)
        
        # object detection
        result = model_instance.detect(temp_path)
        
        if result is None:
            return None, "Detection failed. Please try again with a different image.", {}
        
        # calculate stats
        stats = EvaluationMetrics.calculate_basic_stats(result)
            
        # add space calculation
        spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
        stats["spatial_metrics"] = spatial_metrics
        
        if filter_classes and len(filter_classes) > 0:
            # get classes, boxes, confidence
            classes = result.boxes.cls.cpu().numpy().astype(int)
            confs = result.boxes.conf.cpu().numpy()
            boxes = result.boxes.xyxy.cpu().numpy()
            
            mask = np.zeros_like(classes, dtype=bool)
            for cls_id in filter_classes:
                mask = np.logical_or(mask, classes == cls_id)
    
            filtered_stats = {
                "total_objects": int(np.sum(mask)),
                "class_statistics": {},
                "average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
                "spatial_metrics": stats["spatial_metrics"]  
            }
            
            # update stats 
            names = result.names
            for cls, conf in zip(classes[mask], confs[mask]):
                cls_name = names[int(cls)]
                if cls_name not in filtered_stats["class_statistics"]:
                    filtered_stats["class_statistics"][cls_name] = {
                        "count": 0,
                        "average_confidence": 0
                    }
                
                filtered_stats["class_statistics"][cls_name]["count"] += 1
                filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
            
            stats = filtered_stats
        
        viz_data = EvaluationMetrics.generate_visualization_data(
            result, 
            color_mapper.get_all_colors()
        )
        
        result_image = VisualizationHelper.visualize_detection(
            temp_path, result, color_mapper=color_mapper, figsize=(12, 12), return_pil=True
        )
        
        result_text = EvaluationMetrics.format_detection_summary(viz_data)
        
        return result_image, result_text, stats
        
    except Exception as e:
        error_message = f"Error Occurs: {str(e)}"
        import traceback
        traceback.print_exc()  
        print(error_message)
        return None, error_message, {}
    
    finally:
        if temp_path and os.path.exists(temp_path):
            try:
                os.remove(temp_path)
            except Exception as e:
                print(f"Cannot delete temp files {temp_path}: {str(e)}")

def format_result_text(stats):
    """Format detection statistics into readable text"""
    if not stats or "total_objects" not in stats:
        return "No objects detected."
        
    lines = [
        f"Detected {stats['total_objects']} objects.",  
        f"Average confidence: {stats.get('average_confidence', 0):.2f}",
        "",
        "Objects by class:",
    ]
    
    if "class_statistics" in stats and stats["class_statistics"]:
        # Sort classes by count
        sorted_classes = sorted(
            stats["class_statistics"].items(),
            key=lambda x: x[1]["count"],
            reverse=True
        )
        
        for cls_name, cls_stats in sorted_classes:
            lines.append(f"• {cls_name}: {cls_stats['count']} (avg conf: {cls_stats.get('average_confidence', 0):.2f})")
    else:
        lines.append("No class information available.")
    
    return "\n".join(lines)

def get_all_classes():
    """Get all available COCO classes"""
    try:
        class_names = model.class_names
        return [(idx, name) for idx, name in class_names.items()]
    except:
        # Fallback to standard COCO classes
        return [
            (0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
            (5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
            (10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'), 
            (14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
            (20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
            (25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
            (30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
            (35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'), 
            (39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
            (44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'), 
            (49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
            (54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'), 
            (59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
            (64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'), 
            (69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
            (74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'), 
            (79, 'toothbrush')
        ]

def create_interface():
    """Create the Gradio interface"""
    # Get CSS styles
    css = """
    body {
        font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
        background: linear-gradient(120deg, #e0f7fa, #b2ebf2);
        margin: 0;
        padding: 0;
    }
    
    .gradio-container {
        max-width: 1200px !important;
    }
    
    .app-header {
        text-align: center;
        margin-bottom: 2rem;
        background: rgba(255, 255, 255, 0.8);
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    .app-title {
        color: #2D3748;
        font-size: 2.5rem;
        margin-bottom: 0.5rem;
        background: linear-gradient(90deg, #4299e1, #48bb78);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
    }
    
    .app-subtitle {
        color: #4A5568;
        font-size: 1.2rem;
        font-weight: normal;
        margin-top: 0.25rem;
    }
    
    .app-divider {
        width: 50px;
        height: 3px;
        background: linear-gradient(90deg, #4299e1, #48bb78);
        margin: 1rem auto;
    }
    
    .input-panel, .output-panel {
        background: white;
        border-radius: 10px;
        padding: 1rem;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    }
    
    .detect-btn {
        background: linear-gradient(90deg, #4299e1, #48bb78) !important;
        color: white !important;
        border: none !important;
        transition: transform 0.3s, box-shadow 0.3s !important;
    }

    .detect-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
    }

    .detect-btn:active {
        transform: translateY(1px) !important;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
    }
    
    .footer {
        text-align: center;
        margin-top: 2rem;
        font-size: 0.9rem;
        color: #4A5568;
    }
    
    /* Responsive adjustments */
    @media (max-width: 768px) {
        .app-title {
            font-size: 2rem;
        }
        
        .app-subtitle {
            font-size: 1rem;
        }
    }
    """

    # get the models info
    available_models = DetectionModel.get_available_models()
    model_choices = [model["model_file"] for model in available_models]
    model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
    
    # Available classes for filtering
    available_classes = get_all_classes()
    class_choices = [f"{id}: {name}" for id, name in available_classes]
    
    # Create Gradio Blocks interface
    with gr.Blocks(css=css) as demo:
        # Header
        with gr.Group(elem_classes="app-header"):
            gr.HTML("""
                <h1 class="app-title">VisionScout</h1>
                <h2 class="app-subtitle">Detect and identify objects in your images</h2>
                <div class="app-divider"></div>
            """)

        current_model = gr.State("yolov8m.pt")  # use medium size as default
        
        # Input and Output panels
        with gr.Row():
            # Left column - Input controls
            with gr.Column(scale=4, elem_classes="input-panel"):
                with gr.Group():
                    gr.Markdown("### Upload Image")
                    image_input = gr.Image(type="pil", label="Upload an image")
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            model_dropdown = gr.Dropdown(
                                choices=model_choices,
                                value="yolov8m.pt",  
                                label="Select Model",
                                info="Choose different models based on your needs for speed vs. accuracy"
                            )
                        
                        # display model info
                        model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))

                        confidence = gr.Slider(
                            minimum=0.1, 
                            maximum=0.9, 
                            value=0.25, 
                            step=0.05, 
                            label="Confidence Threshold",
                            info="Higher values show fewer but more confident detections"
                        )
                        
                        with gr.Accordion("Filter Classes", open=False):
                            # Common object categories
                            with gr.Row():
                                people_btn = gr.Button("People")
                                vehicles_btn = gr.Button("Vehicles")
                                animals_btn = gr.Button("Animals")
                                objects_btn = gr.Button("Common Objects")
                            
                            # Class selection
                            class_filter = gr.Dropdown(
                                choices=class_choices,
                                multiselect=True,
                                label="Select Classes to Display",
                                info="Leave empty to show all detected objects"
                            )
                    
                    detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
                
                with gr.Group():
                    gr.Markdown("### How to Use")
                    gr.Markdown("""
                    1. Upload an image or use the camera
                    2. Adjust confidence threshold if needed
                    3. Optionally filter to specific object classes
                    4. Click "Detect Objects" button
                    
                    The model will identify objects in your image and display them with bounding boxes.
                    
                    **Note:** Detection quality depends on image clarity and object visibility. The model can detect up to 80 different types of common objects.
                    """)
            
            # Right column - Results display
            with gr.Column(scale=6, elem_classes="output-panel"):
                with gr.Tab("Detection Result"):
                    result_image = gr.Image(type="pil", label="Detection Result")
                    result_text = gr.Textbox(label="Detection Details", lines=10)
                
                with gr.Tab("Statistics"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            stats_json = gr.Json(label="Full Statistics")
                        
                        with gr.Column(scale=1):
                            gr.Markdown("### Object Distribution")
                            plot_output = gr.Plot(label="Object Distribution")

        # model option
        model_dropdown.change(
            fn=lambda model: (model, DetectionModel.get_model_description(model)),
            inputs=[model_dropdown],
            outputs=[current_model, model_info]
        )
        
        # change the buttom of different model
        detect_btn.click(
            fn=lambda img, model, conf, classes: process_and_plot(img, model, conf, classes),
            inputs=[image_input, current_model, confidence, class_filter],
            outputs=[result_image, result_text, stats_json, plot_output]
        )
        
        # Quick filter buttons
        people_classes = [0]  # Person
        vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8]  # Various vehicles
        animals_classes = list(range(14, 24))  # Animals in COCO
        common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76]  # Common household items
        
        people_btn.click(
            lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
            outputs=class_filter
        )
        
        vehicles_btn.click(
            lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
            outputs=class_filter
        )
        
        animals_btn.click(
            lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
            outputs=class_filter
        )
        
        objects_btn.click(
            lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
            outputs=class_filter
        )
        
        # Set up example images
        example_images = [
            "room_01.jpg",
            "street_01.jpg",
            "street_02.jpg",
            "street_03.jpg"
        ]
        
        
        gr.Examples(
            examples=example_images,
            inputs=image_input,
            outputs=None,  
            fn=None,  
            cache_examples=False,  
        )
        
        # Footer
        gr.HTML("""
            <div class="footer">
                <p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
                <p>Model can detect 80 different classes of objects</p>
            </div>
        """)
    
    return demo

@spaces.GPU
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
    """
    Process image and create plots for statistics
    
    Args:
        image: Input image
        model_name: Name of the model to use
        confidence_threshold: Confidence threshold for detection
        filter_classes: Optional list of classes to filter results
        
    Returns:
        Tuple of (result_image, result_text, stats_json, plot_figure)
    """
    global model_instances
    
    if model_name not in model_instances:
        print(f"Creating new model instance for {model_name}")
        model_instances[model_name] = DetectionModel(model_name=model_name, confidence=confidence_threshold, iou=0.45)
    else:
        print(f"Using existing model instance for {model_name}")
        model_instances[model_name].confidence = confidence_threshold
    
    class_ids = None
    if filter_classes:
        class_ids = []
        for class_str in filter_classes:
            try:
                # Extract ID from format "id: name"
                class_id = int(class_str.split(":")[0].strip())
                class_ids.append(class_id)
            except:
                continue
    
    # execute detection
    result_image, result_text, stats = process_image(
        image, 
        model_instances[model_name], 
        confidence_threshold, 
        class_ids
    )
    
    # create stats table
    plot_figure = create_stats_plot(stats)
    
    return result_image, result_text, stats, plot_figure

def create_stats_plot(stats):
    """
    Create a visualization of statistics data
    
    Args:
        stats: Dictionary containing detection statistics
        
    Returns:
        Matplotlib figure with visualization
    """
    if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
        # Create empty plot if no data
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, "No detection data available", 
                ha='center', va='center', fontsize=12)
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.axis('off')
        return fig
    
    # preparing visualization data
    viz_data = {
        "total_objects": stats.get("total_objects", 0),
        "average_confidence": stats.get("average_confidence", 0),
        "class_data": []
    }
    
    # get current model classes
    # This uses the get_all_classes function which should retrieve from the current model
    available_classes = dict(get_all_classes())
    
    # process class data
    for cls_name, cls_stats in stats.get("class_statistics", {}).items():
        # search for class ID
        class_id = -1
        
        # Try to find the class ID from class names
        for id, name in available_classes.items():
            if name == cls_name:
                class_id = id
                break
        
        cls_data = {
            "name": cls_name,
            "class_id": class_id,
            "count": cls_stats.get("count", 0),
            "average_confidence": cls_stats.get("average_confidence", 0),
            "color": color_mapper.get_color(class_id if class_id >= 0 else cls_name)
        }
        
        viz_data["class_data"].append(cls_data)
    
    # Sort by count in descending order
    viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
    
    return EvaluationMetrics.create_stats_plot(viz_data)


if __name__ == "__main__":
    import time
    
    demo = create_interface()
    demo.launch()