import gradio as gr import os import requests import json import time from dotenv import load_dotenv # Load .env file (if it exists) load_dotenv() def create_deepseek_interface(): # Get API keys from environment variables api_key = os.getenv("FW_API_KEY") serphouse_api_key = os.getenv("SERPHOUSE_API_KEY") if not api_key: print("Warning: FW_API_KEY environment variable is not set.") if not serphouse_api_key: print("Warning: SERPHOUSE_API_KEY environment variable is not set.") # Keyword extraction function (LLM-based) def extract_keywords_with_llm(query): if not api_key: return "FW_API_KEY not set for LLM keyword extraction.", query # Extract keywords using LLM (DeepSeek model) url = "https://api.fireworks.ai/inference/v1/chat/completions" payload = { "model": "accounts/fireworks/models/deepseek-r1-0528", "max_tokens": 200, "temperature": 0.1, # Low temperature for consistent results "messages": [ { "role": "system", "content": "You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem. Extract key search terms from the user's question that would be effective for web searches. Provide these as a search query with words separated by spaces only, without commas. For example: 'Prime Minister Han Duck-soo impeachment results'" }, { "role": "user", "content": query } ] } headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() result = response.json() # Extract keywords from response keywords = result["choices"][0]["message"]["content"].strip() # Use original query if keywords are too long or improperly formatted if len(keywords) > 100: return f"Extracted keywords: {keywords}", query return f"Extracted keywords: {keywords}", keywords except Exception as e: print(f"Error during keyword extraction: {str(e)}") return f"Error during keyword extraction: {str(e)}", query # Search function using SerpHouse API def search_with_serphouse(query): if not serphouse_api_key: return "SERPHOUSE_API_KEY is not set." try: # Extract keywords extraction_result, search_query = extract_keywords_with_llm(query) print(f"Original query: {query}") print(extraction_result) # Basic GET method seems best after analyzing documentation url = "https://api.serphouse.com/serp/live" # Check if query is in Korean is_korean = any('\uAC00' <= c <= '\uD7A3' for c in search_query) # Simplified parameters params = { "q": search_query, "domain": "google.com", "serp_type": "web", # Changed to basic web search "device": "desktop", "lang": "ko" if is_korean else "en" } headers = { "Authorization": f"Bearer {serphouse_api_key}" } print(f"Calling SerpHouse API with basic GET method...") print(f"Search term: {search_query}") print(f"Request URL: {url} - Parameters: {params}") # Execute GET request response = requests.get(url, headers=headers, params=params) response.raise_for_status() print(f"SerpHouse API response status code: {response.status_code}") search_results = response.json() # Check response structure print(f"Response structure: {list(search_results.keys()) if isinstance(search_results, dict) else 'Not a dictionary'}") # Parse and format search results (in Markdown) formatted_results = [] formatted_results.append(f"## Search term: {search_query}\n\n") # Handle various possible response structures organic_results = None # Possible response structure 1 if "results" in search_results and "organic" in search_results["results"]: organic_results = search_results["results"]["organic"] # Possible response structure 2 elif "organic" in search_results: organic_results = search_results["organic"] # Possible response structure 3 (nested results) elif "results" in search_results and "results" in search_results["results"]: if "organic" in search_results["results"]["results"]: organic_results = search_results["results"]["results"]["organic"] # Process organic results if available if organic_results and len(organic_results) > 0: # Output response structure print(f"First organic result structure: {organic_results[0].keys() if len(organic_results) > 0 else 'empty'}") for i, result in enumerate(organic_results[:5], 1): # Show only top 5 results title = result.get("title", "No title") snippet = result.get("snippet", "No content") link = result.get("link", "#") displayed_link = result.get("displayed_link", link) # Format in Markdown (including number and link) formatted_results.append( f"### {i}. [{title}]({link})\n\n" f"{snippet}\n\n" f"**Source**: [{displayed_link}]({link})\n\n" f"---\n\n" ) print(f"Found {len(organic_results)} search results") return "".join(formatted_results) # Handle case with no results or unexpected structure print("No search results or unexpected response structure") print(f"Detailed response structure: {search_results.keys() if hasattr(search_results, 'keys') else 'Unclear structure'}") # Find error messages in response error_msg = "No search results found or response format is different than expected" if "error" in search_results: error_msg = search_results["error"] elif "message" in search_results: error_msg = search_results["message"] return f"## Results for '{search_query}'\n\n{error_msg}" except Exception as e: error_msg = f"Error during search: {str(e)}" print(error_msg) import traceback print(traceback.format_exc()) # Add API request details for debugging (in Markdown) return f"## Error Occurred\n\n" + \ f"An error occurred during search: **{str(e)}**\n\n" + \ f"### API Request Details:\n" + \ f"- **URL**: {url}\n" + \ f"- **Search Term**: {search_query}\n" + \ f"- **Parameters**: {params}\n" # Function to call DeepSeek API with streaming def query_deepseek_streaming(message, history, use_deep_research): print(f"\n=== Starting query_deepseek_streaming ===") print(f"Message: {message}") print(f"History length: {len(history)}") print(f"Deep Research: {use_deep_research}") if not api_key: error_msg = "Environment variable FW_API_KEY is not set. Please check the environment variables on the server." yield history + [(message, error_msg)], error_msg return search_context = "" search_info = "" # Create new history with the user message new_history = history + [(message, "")] if use_deep_research: try: # Update with search status new_history[-1] = (message, "๐Ÿ” Extracting optimal keywords and searching the web...") yield new_history, "" # Execute search print(f"Deep Research activated: Starting search for '{message}'") search_results = search_with_serphouse(message) print(f"Search results received: {search_results[:100]}...") if not search_results.startswith("Error during search") and not search_results.startswith("SERPHOUSE_API_KEY"): search_context = f""" Here are recent search results related to the user's question. Use this information to provide an accurate response with the latest information: {search_results} Based on the above search results, answer the user's question. If you cannot find a clear answer in the search results, use your knowledge to provide the best answer. When citing search results, mention the source, and ensure your answer reflects the latest information. """ search_info = "๐Ÿ” Deep Research feature activated: Generating response based on relevant web search results...\n\n" else: print(f"Search failed or no results: {search_results}") search_info = f"๐Ÿ” Search error: {search_results}\n\n" except Exception as e: print(f"Exception occurred during Deep Research: {str(e)}") search_info = f"๐Ÿ” Deep Research feature error: {str(e)}\n\n" # Update history with search info new_history[-1] = (message, search_info) yield new_history, "" # Prepare conversation history for API request messages = [] for user, assistant in history: if user and assistant: # Only add non-empty messages messages.append({"role": "user", "content": user}) messages.append({"role": "assistant", "content": assistant}) # Add system message with search context if available if search_context: messages.insert(0, {"role": "system", "content": search_context}) # Add new user message messages.append({"role": "user", "content": message}) # Prepare API request url = "https://api.fireworks.ai/inference/v1/chat/completions" payload = { "model": "accounts/fireworks/models/deepseek-r1-0528", "max_tokens": 20480, "top_p": 1, "top_k": 40, "presence_penalty": 0, "frequency_penalty": 0, "temperature": 0.6, "messages": messages, "stream": True } headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } print(f"Calling DeepSeek API...") print(f"Number of messages in conversation: {len(messages)}") try: response = requests.post(url, headers=headers, json=payload, stream=True) response.raise_for_status() print(f"API Response Status: {response.status_code}") # Full response text full_response = search_info chunk_count = 0 # Process streaming response for line in response.iter_lines(): if line: line_text = line.decode('utf-8') # Remove 'data: ' prefix if line_text.startswith("data: "): line_text = line_text[6:] # Check for stream end message if line_text == "[DONE]": print(f"Stream completed. Total chunks: {chunk_count}") break try: # Parse JSON chunk = json.loads(line_text) # Check if there's content in the chunk if "choices" in chunk and len(chunk["choices"]) > 0: delta = chunk["choices"][0].get("delta", {}) chunk_content = delta.get("content", "") if chunk_content: chunk_count += 1 full_response += chunk_content # Update chat history new_history[-1] = (message, full_response) # Debug: Print first few chunks if chunk_count <= 5: print(f"Chunk {chunk_count}: {repr(chunk_content[:50])}") # Yield updated history yield new_history, "" except json.JSONDecodeError as e: print(f"JSON decode error: {e}") print(f"Line content: {repr(line_text[:100])}") continue # Final update if not full_response or full_response == search_info: # If no response was generated, add an error message full_response = search_info + "Error: No response generated from the model. Please try again." new_history[-1] = (message, full_response) print(f"Final response length: {len(full_response)}") yield new_history, "" except requests.exceptions.RequestException as e: error_msg = f"API error: {str(e)}" if hasattr(e, 'response') and e.response and e.response.status_code == 401: error_msg = "Authentication failed. Please check your FW_API_KEY environment variable." print(f"Request error: {error_msg}") new_history[-1] = (message, search_info + error_msg) yield new_history, error_msg except Exception as e: error_msg = f"Unexpected error: {str(e)}" print(f"Unexpected error: {error_msg}") import traceback traceback.print_exc() new_history[-1] = (message, search_info + error_msg) yield new_history, error_msg # Create Gradio interface with gr.Blocks(theme="soft", fill_height=True) as demo: # Header section gr.Markdown( """ # ๐Ÿค– Deepseek r1 0528 + Research ### deepseek-r1-0528 Model + Real-time 'Deep Research' Agentic AI System @ https://discord.gg/openfreeai """ ) # Main layout with gr.Row(): # Main content area with gr.Column(): # Chat interface chatbot = gr.Chatbot( height=500, show_label=False, container=True, type="tuples" # Explicitly set type ) # Add Deep Research toggle and status display with gr.Row(): with gr.Column(scale=3): use_deep_research = gr.Checkbox( label="Enable Deep Research", info="Utilize optimal keyword extraction and web search for latest information", value=False ) with gr.Column(scale=1): api_status = gr.Markdown("API Status: Ready") # Check and display API key status status_text = "" if not serphouse_api_key: status_text = "โš ๏ธ SERPHOUSE_API_KEY is not set" if not api_key: status_text = "โš ๏ธ FW_API_KEY is not set" if api_key and serphouse_api_key: status_text = "โœ… API keys configured" api_status.value = status_text # Input area with gr.Row(): msg = gr.Textbox( label="Message", placeholder="Enter your prompt here...", show_label=False, scale=9, lines=2 ) submit = gr.Button("Send", variant="primary", scale=1) # Clear conversation button with gr.Row(): clear = gr.ClearButton([msg, chatbot], value="๐Ÿงน Clear Conversation") # Example queries gr.Examples( examples=[ "Explain the difference between Transformers and RNNs in deep learning.", "Write a Python function to find prime numbers within a specific range.", "Summarize the key concepts of reinforcement learning." ], inputs=msg ) # Error message display error_box = gr.Markdown("") # Connect buttons to functions submit.click( query_deepseek_streaming, inputs=[msg, chatbot, use_deep_research], outputs=[chatbot, error_box], queue=True # Enable queue for streaming ).then( lambda: "", None, [msg] ) # Allow Enter key submission msg.submit( query_deepseek_streaming, inputs=[msg, chatbot, use_deep_research], outputs=[chatbot, error_box], queue=True # Enable queue for streaming ).then( lambda: "", None, [msg] ) return demo # Run interface if __name__ == "__main__": demo = create_deepseek_interface() demo.launch(debug=True, share=False, server_name="0.0.0.0", server_port=7860)