text3d-r1 / app-backup.py
ginipick's picture
Update app-backup.py
9c4b08b verified
raw
history blame
12.4 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
from transformers import pipeline
import base64
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
# 샘플 이미지와 프롬프트 정의
SAMPLE_IMAGES = {
"3d2.webp": "the most famous hero according to Yuri Milner",
"3d3.webp": "purple nest",
"3d4.webp": "Timothy's sabbath",
"3d5.webp": "A schoolboy friend of Julián Carax, fun-loving and loyal",
"3d6.webp": "Friend of Daniel and his father",
"3d7.webp": "WHERE ships of purple gently toss On seas of daffodil",
"3d8.webp": "Beat the drums of tragedy for me, And let the white violins whir thin and slow",
"3d9.webp": "And let the choir sing a stormy song To drown the rattle of my dying breath.",
"3d10.webp": "Beat the drums of tragedy and death",
"3d11.webp": "Beat the drums of tragedy for me.",
"3d12.webp": "Touching the infinite, else far and untrod, With oracles divine that speak of God.",
"3d13.webp": "Night, standing on her starry pulpit, free, Utters them in the dread, the silver roll Of spheres, woods, winds and waves, alternately",
"3d14.webp": "On sermons deep, fit time to feast the soul.",
"3d15.webp": "The bee is cradled in the bud; and far, Cold glittering lights, the azure curtain, throng— Planet on beaming planet, star on star.",
"3d16.webp": "The lark's sweet pipe has ceased its latest song",
"3d17.webp": "the snake was a roaming dog",
"3d18.webp": "Antonio Battistella portraying Father of Giulia",
"3d19.webp": "So straight to her father the brisk young lady went, And said, grant me one favour, do give your consent",
"3d20.webp": "Before that we are marry’d let me your father see, All fear is, now miscarry’d, my heart is full of glee",
"3d21.webp": "My heart you now have gained, you are all I prize, So make yourself contented, pray be satisfied.",
"3d22.webp": "O pray what is the favour that of me you crave? If it lies in my power you the same shall have",
"3d23.webp": "Could I but see your father, and my mind reveal, I have both gold and silver, and houses at my will",
"3d1.webp": "the most famous hero according to Zhou Qi"
}
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN # 경고 메시지가 뜨지만 무시 가능
)
# Hyper-SD LoRA 로드
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
@spaces.GPU
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
global pipe
if seed is None:
seed = get_random_seed()
# 한글 감지 및 번역
def contains_korean(text):
return any(ord('가') <= ord(c) <= ord('힣') for c in text)
# 프롬프트 전처리
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
prompt = translated
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
def update_random_seed():
"""버튼으로 눌렀을 때 새로운 시드를 업데이트"""
return gr.update(value=get_random_seed())
# Gradio 인터페이스
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a);
border-radius: 20px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(45deg, #2196F3, #00BCD4);
border: none;
color: white;
font-weight: bold;
border-radius: 10px;
}
.output-image {
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.2);
}
.fixed-width {
max-width: 1024px;
margin: auto;
}
.gallery-container {
margin-top: 40px;
padding: 20px;
background: #f5f5f5;
border-radius: 15px;
width: 100%;
margin: 0 auto;
}
.gallery-title {
text-align: center;
margin-bottom: 20px;
color: #333;
font-size: 1.5rem;
}
"""
) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator v2.0</h1>
<p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI. https://discord.gg/openfreeai </p>
</div>
"""
)
with gr.Row(elem_classes="container"):
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the 3D image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"✨ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4, elem_classes=["fixed-width"]):
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"],
value="3d.webp"
)
# gallery-container 부분을 Group으로 감싸 화면 전체에 확장
with gr.Group(elem_classes="gallery-container"):
gr.HTML("<h2 class='gallery-title'>Gallery</h2>")
gallery_html = """
<div style='
display: grid;
grid-template-columns: repeat(4, 1fr);
gap: 20px;
width: 100%;
'>
"""
for img_file, prompt_text in SAMPLE_IMAGES.items():
img_path = os.path.abspath(img_file)
if os.path.exists(img_path):
try:
with open(img_path, "rb") as img:
img_data = base64.b64encode(img.read()).decode()
gallery_html += f"""
<div style='
border: 1px solid #ddd;
border-radius: 10px;
padding: 10px;
background: white;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
'>
<img src='data:image/webp;base64,{img_data}'
style='width: 100%;
border-radius: 8px;
margin-bottom: 10px;'
>
<p style='
margin: 5px 0;
font-weight: bold;
color: #333;
padding: 10px;
'>Prompt: {prompt_text}</p>
</div>
"""
except Exception as e:
print(f"Error loading image {img_file}: {str(e)}")
gallery_html += "</div>"
gr.HTML(gallery_html)
# 이벤트 핸들러
generate_btn.click(
fn=process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
randomize_seed.click(
fn=update_random_seed,
inputs=None,
outputs=seed
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])