Spaces:
Running
on
Zero
Running
on
Zero
Update app-backup.py
Browse files- app-backup.py +69 -101
app-backup.py
CHANGED
@@ -56,7 +56,7 @@ pipe = FluxPipeline.from_pretrained(
|
|
56 |
use_auth_token=HF_TOKEN
|
57 |
)
|
58 |
|
59 |
-
# Hyper-SD LoRA λ‘λ
|
60 |
pipe.load_lora_weights(
|
61 |
hf_hub_download(
|
62 |
"ByteDance/Hyper-SD",
|
@@ -89,10 +89,6 @@ def save_image(image):
|
|
89 |
image = Image.fromarray(image)
|
90 |
image.save(filepath, "PNG", quality=100)
|
91 |
|
92 |
-
if not os.path.exists(filepath):
|
93 |
-
print(f"Warning: Failed to verify saved image at {filepath}")
|
94 |
-
return None
|
95 |
-
|
96 |
return filepath
|
97 |
except Exception as e:
|
98 |
print(f"Failed to save image: {str(e)}")
|
@@ -102,7 +98,6 @@ def save_image(image):
|
|
102 |
print(f"Error in save_image: {str(e)}")
|
103 |
return None
|
104 |
|
105 |
-
|
106 |
# μμ ν둬ννΈ μ μ
|
107 |
examples = [
|
108 |
["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
|
@@ -117,7 +112,61 @@ examples = [
|
|
117 |
["A 3D floating magical crystal orb with internal energy swirls"]
|
118 |
]
|
119 |
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Blocks(
|
122 |
theme=gr.themes.Soft(),
|
123 |
css="""
|
@@ -160,57 +209,6 @@ with gr.Blocks(
|
|
160 |
lines=3
|
161 |
)
|
162 |
|
163 |
-
# ... (κΈ°μ‘΄ Advanced Settings μ½λ)
|
164 |
-
|
165 |
-
with gr.Column(scale=4, elem_classes=["fixed-width"]):
|
166 |
-
# κΈ°λ³Έ μ΄λ―Έμ§ μ€μ
|
167 |
-
output = gr.Image(
|
168 |
-
label="Generated Image",
|
169 |
-
elem_id="output-image",
|
170 |
-
elem_classes=["output-image", "fixed-width"],
|
171 |
-
value="3d.webp" # κΈ°λ³Έ μ΄λ―Έμ§ μ€μ
|
172 |
-
)
|
173 |
-
|
174 |
-
# Examples μΉμ
μΆκ°
|
175 |
-
gr.Examples(
|
176 |
-
examples=examples,
|
177 |
-
inputs=prompt,
|
178 |
-
outputs=output,
|
179 |
-
fn=process_and_save_image,
|
180 |
-
cache_examples=True, # μμ κ²°κ³Ό μΊμ± νμ±ν
|
181 |
-
examples_per_page=5
|
182 |
-
)
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
if __name__ == "__main__":
|
187 |
-
demo.launch(
|
188 |
-
allowed_paths=[PERSISTENT_DIR],
|
189 |
-
share=True
|
190 |
-
)
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
# Create Gradio interface
|
205 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
206 |
-
with gr.Row():
|
207 |
-
with gr.Column(scale=3):
|
208 |
-
prompt = gr.Textbox(
|
209 |
-
label="Image Description",
|
210 |
-
placeholder="Describe the image you want to create...",
|
211 |
-
lines=3
|
212 |
-
)
|
213 |
-
|
214 |
with gr.Accordion("Advanced Settings", open=False):
|
215 |
with gr.Row():
|
216 |
height = gr.Slider(
|
@@ -244,9 +242,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
244 |
value=3.5
|
245 |
)
|
246 |
|
247 |
-
def get_random_seed():
|
248 |
-
return torch.randint(0, 1000000, (1,)).item()
|
249 |
-
|
250 |
seed = gr.Number(
|
251 |
label="Seed (random by default, set for reproducibility)",
|
252 |
value=get_random_seed(),
|
@@ -264,51 +259,24 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
264 |
output = gr.Image(
|
265 |
label="Generated Image",
|
266 |
elem_id="output-image",
|
267 |
-
elem_classes=["output-image", "fixed-width"]
|
|
|
268 |
)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
# νκΈμ μμ΄λ‘ λ²μ
|
281 |
-
translated = translator(prompt)[0]['translation_text']
|
282 |
-
prompt = translated
|
283 |
-
|
284 |
-
# ν둬ννΈ νμ κ°μ
|
285 |
-
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
|
286 |
-
|
287 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
288 |
-
try:
|
289 |
-
generated_image = pipe(
|
290 |
-
prompt=[formatted_prompt],
|
291 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
292 |
-
num_inference_steps=int(steps),
|
293 |
-
guidance_scale=float(scales),
|
294 |
-
height=int(height),
|
295 |
-
width=int(width),
|
296 |
-
max_sequence_length=256
|
297 |
-
).images[0]
|
298 |
-
|
299 |
-
saved_path = save_image(generated_image)
|
300 |
-
if saved_path is None:
|
301 |
-
print("Warning: Failed to save generated image")
|
302 |
-
|
303 |
-
return generated_image
|
304 |
-
except Exception as e:
|
305 |
-
print(f"Error in image generation: {str(e)}")
|
306 |
-
return None
|
307 |
-
|
308 |
def update_seed():
|
309 |
return get_random_seed()
|
310 |
|
311 |
-
#
|
312 |
generate_btn.click(
|
313 |
process_and_save_image,
|
314 |
inputs=[height, width, steps, scales, prompt, seed],
|
|
|
56 |
use_auth_token=HF_TOKEN
|
57 |
)
|
58 |
|
59 |
+
# Hyper-SD LoRA λ‘λ
|
60 |
pipe.load_lora_weights(
|
61 |
hf_hub_download(
|
62 |
"ByteDance/Hyper-SD",
|
|
|
89 |
image = Image.fromarray(image)
|
90 |
image.save(filepath, "PNG", quality=100)
|
91 |
|
|
|
|
|
|
|
|
|
92 |
return filepath
|
93 |
except Exception as e:
|
94 |
print(f"Failed to save image: {str(e)}")
|
|
|
98 |
print(f"Error in save_image: {str(e)}")
|
99 |
return None
|
100 |
|
|
|
101 |
# μμ ν둬ννΈ μ μ
|
102 |
examples = [
|
103 |
["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
|
|
|
112 |
["A 3D floating magical crystal orb with internal energy swirls"]
|
113 |
]
|
114 |
|
115 |
+
@spaces.GPU
|
116 |
+
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
|
117 |
+
global pipe
|
118 |
+
|
119 |
+
if seed is None:
|
120 |
+
seed = torch.randint(0, 1000000, (1,)).item()
|
121 |
+
|
122 |
+
# νκΈ κ°μ§ λ° λ²μ
|
123 |
+
def contains_korean(text):
|
124 |
+
return any(ord('κ°') <= ord(c) <= ord('ν£') for c in text)
|
125 |
+
|
126 |
+
# ν둬ννΈ μ μ²λ¦¬
|
127 |
+
if contains_korean(prompt):
|
128 |
+
translated = translator(prompt)[0]['translation_text']
|
129 |
+
prompt = translated
|
130 |
+
|
131 |
+
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
|
132 |
+
|
133 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
134 |
+
try:
|
135 |
+
generated_image = pipe(
|
136 |
+
prompt=[formatted_prompt],
|
137 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
138 |
+
num_inference_steps=int(steps),
|
139 |
+
guidance_scale=float(scales),
|
140 |
+
height=int(height),
|
141 |
+
width=int(width),
|
142 |
+
max_sequence_length=256
|
143 |
+
).images[0]
|
144 |
+
|
145 |
+
saved_path = save_image(generated_image)
|
146 |
+
if saved_path is None:
|
147 |
+
print("Warning: Failed to save generated image")
|
148 |
+
|
149 |
+
return generated_image
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Error in image generation: {str(e)}")
|
152 |
+
return None
|
153 |
+
|
154 |
+
def get_random_seed():
|
155 |
+
return torch.randint(0, 1000000, (1,)).item()
|
156 |
+
|
157 |
+
|
158 |
+
def process_example(prompt):
|
159 |
+
return process_and_save_image(
|
160 |
+
height=1024,
|
161 |
+
width=1024,
|
162 |
+
steps=8,
|
163 |
+
scales=3.5,
|
164 |
+
prompt=prompt,
|
165 |
+
seed=get_random_seed()
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
# Gradio μΈν°νμ΄μ€
|
170 |
with gr.Blocks(
|
171 |
theme=gr.themes.Soft(),
|
172 |
css="""
|
|
|
209 |
lines=3
|
210 |
)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
with gr.Accordion("Advanced Settings", open=False):
|
213 |
with gr.Row():
|
214 |
height = gr.Slider(
|
|
|
242 |
value=3.5
|
243 |
)
|
244 |
|
|
|
|
|
|
|
245 |
seed = gr.Number(
|
246 |
label="Seed (random by default, set for reproducibility)",
|
247 |
value=get_random_seed(),
|
|
|
259 |
output = gr.Image(
|
260 |
label="Generated Image",
|
261 |
elem_id="output-image",
|
262 |
+
elem_classes=["output-image", "fixed-width"],
|
263 |
+
value="3d.webp"
|
264 |
)
|
265 |
|
266 |
+
# Examples μΉμ
|
267 |
+
gr.Examples(
|
268 |
+
examples=examples,
|
269 |
+
inputs=prompt,
|
270 |
+
outputs=output,
|
271 |
+
fn=process_example, # μμ λ ν¨μ μ¬μ©
|
272 |
+
cache_examples=False,
|
273 |
+
examples_per_page=5
|
274 |
+
)
|
275 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
def update_seed():
|
277 |
return get_random_seed()
|
278 |
|
279 |
+
# μ΄λ²€νΈ νΈλ€λ¬
|
280 |
generate_btn.click(
|
281 |
process_and_save_image,
|
282 |
inputs=[height, width, steps, scales, prompt, seed],
|