import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline # Setup and initialization code remains the same cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) # Custom CSS for enhanced visual design css = """ footer {display: none !important} .container {max-width: 1200px; margin: auto;} .gr-form {border-radius: 12px; padding: 20px; background: rgba(255, 255, 255, 0.05);} .gr-box {border-radius: 8px; border: 1px solid rgba(255, 255, 255, 0.1);} .gr-button { border-radius: 8px; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); border: none; color: white; transition: transform 0.2s ease; } .gr-button:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } .gr-input {background: rgba(255, 255, 255, 0.05) !important;} .gr-input:focus {border-color: #4B79A1 !important;} .title-text { text-align: center; font-size: 2.5em; font-weight: bold; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 1em; } """ # Create Gradio interface with enhanced design with gr.Blocks(theme=gr.themes.Soft( primary_hue="blue", secondary_hue="slate", neutral_hue="slate", font=gr.themes.GoogleFont("Inter") ), css=css) as demo: gr.HTML("""
AI Image Generator
Create stunning images from your descriptions using advanced AI
""") with gr.Row().style(equal_height=True): with gr.Column(scale=3): with gr.Group(): prompt = gr.Textbox( label="Image Description", placeholder="Describe the image you want to create...", lines=3, elem_classes="gr-input" ) with gr.Accordion("Advanced Settings", open=False): with gr.Group(): with gr.Row(): with gr.Column(scale=1): height = gr.Slider( label="Height", minimum=256, maximum=1152, step=64, value=1024, elem_classes="gr-input" ) with gr.Column(scale=1): width = gr.Slider( label="Width", minimum=256, maximum=1152, step=64, value=1024, elem_classes="gr-input" ) with gr.Row(): with gr.Column(scale=1): steps = gr.Slider( label="Inference Steps", minimum=6, maximum=25, step=1, value=8, elem_classes="gr-input" ) with gr.Column(scale=1): scales = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5, elem_classes="gr-input" ) seed = gr.Number( label="Seed (for reproducibility)", value=3413, precision=0, elem_classes="gr-input" ) generate_btn = gr.Button( "✨ Generate Image", variant="primary", scale=1, elem_classes="gr-button" ) gr.HTML("""

Tips for best results:

""") with gr.Column(scale=4): output = gr.Image( label="Generated Image", elem_classes="gr-box", height=512 ) with gr.Group(visible=False) as loading_info: gr.HTML("""
⚙️

Generating your image...

""") @spaces.GPU def process_image(height, width, steps, scales, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): return pipe( prompt=[prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] # Add loading state generate_btn.click( fn=lambda: gr.update(visible=True), outputs=[loading_info], queue=False ).then( process_image, inputs=[height, width, steps, scales, prompt, seed], outputs=output ).then( fn=lambda: gr.update(visible=False), outputs=[loading_info] ) if __name__ == "__main__": demo.launch()