Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,098 Bytes
ad59ac8 cf40b67 835fc41 ad59ac8 835fc41 ad59ac8 835fc41 ad59ac8 835fc41 ad59ac8 0e0c015 ad59ac8 7625ecd 835fc41 cf40b67 835fc41 ad59ac8 0e0c015 835fc41 ad59ac8 cf40b67 835fc41 cf40b67 0e0c015 835fc41 0e0c015 835fc41 0e0c015 835fc41 cf40b67 ad59ac8 835fc41 cf40b67 835fc41 0e0c015 cf40b67 835fc41 0e0c015 cf40b67 0e0c015 835fc41 cf40b67 0e0c015 cf40b67 835fc41 0e0c015 cf40b67 0e0c015 ad59ac8 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 0e0c015 cf40b67 8a9a6c3 835fc41 cf40b67 835fc41 0e0c015 cf40b67 0e0c015 cf40b67 d9c0fb0 cf40b67 d9c0fb0 ad59ac8 cf40b67 0e0c015 cf40b67 d9c0fb0 ad59ac8 cf40b67 d9c0fb0 cf40b67 ad59ac8 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 ad59ac8 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 d9c0fb0 cf40b67 ad59ac8 d9c0fb0 835fc41 cf40b67 ad59ac8 cf40b67 ba24836 cf40b67 0e0c015 cf40b67 ad59ac8 0e0c015 cf40b67 ad59ac8 cf40b67 ad59ac8 cf40b67 8366798 cf40b67 ad59ac8 cf40b67 0e0c015 cf40b67 0e0c015 cf40b67 ad59ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import subprocess # ๐ฅฒ
import os
import time
import torch
import numpy as np
import gradio as gr
import spaces
import re
import json
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
from pydantic import BaseModel
# ----------------------- Setup & Dependency Installation ----------------------- #
try:
subprocess.run(['git', 'lfs', 'install'], check=True)
if not os.path.exists('Kokoro-82M'):
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
try:
subprocess.run(['apt-get', 'update'], check=True)
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
except subprocess.CalledProcessError:
print("Warning: Could not install espeak. Trying espeak-ng...")
try:
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
except subprocess.CalledProcessError:
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
except Exception as e:
print(f"Warning: Initial setup error: {str(e)}")
print("Continuing with limited functionality...")
# ----------------------- Global Variables ----------------------- #
# ์์ฑ ๊ด๋ จ ๋ณ์๋ ๋ ์ด์ ์ฌ์ฉํ์ง ์์
# VOICE_CHOICES = { ... } --> ์ ๊ฑฐ
# ----------------------- Model and Tokenizer Initialization ----------------------- #
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
def init_models():
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
offload_folder="offload",
low_cpu_mem_usage=True,
torch_dtype=torch.float16
)
return model
# ----------------------- Kokoro TTS Initialization ----------------------- #
# ์์ฑ ๊ธฐ๋ฅ ์ ๊ฑฐ: TTS ์ด๊ธฐํ ๊ด๋ จ ์ฝ๋๋ ๋ ์ด์ ์ฌ์ฉํ์ง ์์
TTS_ENABLED = False
# ----------------------- Web Search Functions ----------------------- #
def get_web_results(query, max_results=5):
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{
"title": result.get("title", ""),
"snippet": result["body"],
"url": result["href"],
"date": result.get("published", "")
} for result in results]
except Exception as e:
return []
def format_prompt(query, context):
"""์น ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ์์ฝ๋ ๋ต๋ณ์ ์์ฑํ๋๋ก ํ๋กฌํํธ๋ฅผ ๊ตฌ์ฑํฉ๋๋ค."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_lines = '\n'.join([f'- {res["title"]}: {res["snippet"]}' for res in context])
return f"""You are an intelligent search assistant. Your task is to provide a concise, clear summary answer to the user's query based solely on the provided web context.
Current Time: {current_time}
Query: {query}
Web Context:
{context_lines}
Please provide a summary answer in markdown format, including citations such as [1], [2], etc. in your answer if needed.
Answer:"""
def format_sources(web_results):
if not web_results:
return "<div class='no-sources'>No sources available</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res["title"] or "Source"
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
{date}
<div class='source-snippet'>{res['snippet'][:150]}...</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
# ----------------------- Answer Generation ----------------------- #
@spaces.GPU(duration=30)
def generate_answer(prompt):
model = init_models()
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
return_attention_mask=True
).to(model.device)
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# ----------------------- Process Query and Output Summary ----------------------- #
def process_query(query, history):
try:
if history is None:
history = []
# ์น ๊ฒ์ ๊ฒฐ๊ณผ ๊ฐ์ ธ์ค๊ธฐ
web_results = get_web_results(query)
sources_html = format_sources(web_results)
# ์ค๊ฐ ์ํ ํ์
current_history = history + [[query, "*Searching...*"]]
yield {
answer_output: gr.Markdown("*Searching & Summarizing...*"),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Searching...", interactive=False),
chat_history_display: current_history
}
# ํ๋กฌํํธ ์์ฑ: ์น ๊ฒฐ๊ณผ๋ฅผ ์์ฝํ๋ ํํ๋ก ๊ตฌ์ฑ
prompt_text = format_prompt(query, web_results)
answer = generate_answer(prompt_text)
final_answer = answer.split("Answer:")[-1].strip()
updated_history = history + [[query, final_answer]]
yield {
answer_output: gr.Markdown(final_answer),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: updated_history
}
except Exception as e:
error_message = str(e)
if "GPU quota" in error_message:
error_message = "โ ๏ธ GPU quota exceeded. Please try again later when the daily quota resets."
yield {
answer_output: gr.Markdown(f"Error: {error_message}"),
sources_output: gr.HTML(""),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: history + [[query, f"*Error: {error_message}*"]]
}
# ----------------------- Custom CSS for Bright UI ----------------------- #
css = """
.gradio-container {
max-width: 1200px !important;
background-color: #ffffff !important;
padding: 20px;
border-radius: 12px;
}
#header {
text-align: center;
padding: 2rem 0;
background: #e3f2fd;
border-radius: 12px;
color: #333333;
margin-bottom: 2rem;
}
#header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
.search-container {
background: #f8f9fa;
border-radius: 12px;
padding: 1.5rem;
margin-bottom: 1rem;
border: 1px solid #e0e0e0;
}
.search-box {
padding: 1rem;
background: #ffffff;
border-radius: 8px;
margin-bottom: 1rem;
border: 1px solid #e0e0e0;
}
.search-box input[type="text"] {
background: #ffffff !important;
border: 1px solid #cccccc !important;
color: #333333 !important;
border-radius: 8px !important;
}
.search-box input[type="text"]::placeholder {
color: #888888 !important;
}
.search-box button {
background: #007bff !important;
border: none !important;
}
.results-container {
background: #ffffff;
border-radius: 8px;
padding: 1.5rem;
margin-top: 1rem;
border: 1px solid #e0e0e0;
}
.answer-box {
background: #f1f1f1;
border-radius: 8px;
padding: 1.5rem;
color: #333333;
margin-bottom: 1rem;
}
.answer-box p {
color: #555555;
line-height: 1.6;
}
.sources-container {
margin-top: 1rem;
background: #ffffff;
border-radius: 8px;
padding: 1rem;
border: 1px solid #e0e0e0;
}
.source-item {
display: flex;
padding: 12px;
margin: 8px 0;
background: #f8f9fa;
border-radius: 8px;
transition: all 0.2s;
}
.source-item:hover {
background: #e9ecef;
}
.source-number {
font-weight: bold;
margin-right: 12px;
color: #007bff;
}
.source-content {
flex: 1;
}
.source-title {
color: #007bff;
font-weight: 500;
text-decoration: none;
display: block;
margin-bottom: 4px;
}
.source-date {
color: #888888;
font-size: 0.9em;
margin-left: 8px;
}
.source-snippet {
color: #555555;
font-size: 0.9em;
line-height: 1.4;
}
.chat-history {
max-height: 400px;
overflow-y: auto;
padding: 1rem;
background: #ffffff;
border-radius: 8px;
margin-top: 1rem;
border: 1px solid #e0e0e0;
}
footer {
text-align: center;
padding: 1rem 0;
font-size: 0.9em;
color: #666666;
}
"""
# ----------------------- Gradio Interface ----------------------- #
with gr.Blocks(title="AI Search Assistant", css=css) as demo:
chat_history = gr.State([])
with gr.Column(elem_id="header"):
gr.Markdown("# ๐ AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False
)
search_btn = gr.Button("Search", variant="primary", scale=1)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=2):
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown()
with gr.Accordion("Chat History", open=False):
chat_history_display = gr.Chatbot(elem_classes="chat-history")
with gr.Column(scale=1):
with gr.Column():
gr.Markdown("### Sources")
sources_output = gr.HTML()
with gr.Row():
gr.Examples(
examples=[
"musk explores blockchain for doge",
"nvidia to launch new gaming card",
"What are the best practices for sustainable living?",
"How is climate change affecting ocean ecosystems?"
],
inputs=search_input,
label="Try these examples"
)
search_btn.click(
fn=process_query,
inputs=[search_input, chat_history],
outputs=[answer_output, sources_output, search_btn, chat_history_display]
)
search_input.submit(
fn=process_query,
inputs=[search_input, chat_history],
outputs=[answer_output, sources_output, search_btn, chat_history_display]
)
if __name__ == "__main__":
demo.launch(share=True)
|