File size: 11,098 Bytes
ad59ac8
 
cf40b67
 
835fc41
ad59ac8
 
 
 
 
 
 
 
835fc41
ad59ac8
835fc41
 
 
 
 
 
 
 
 
ad59ac8
835fc41
 
 
 
 
 
 
 
ad59ac8
0e0c015
 
ad59ac8
 
7625ecd
835fc41
cf40b67
 
835fc41
 
 
 
 
 
 
 
 
 
ad59ac8
0e0c015
 
835fc41
ad59ac8
 
cf40b67
 
 
 
 
835fc41
cf40b67
 
 
 
 
 
 
0e0c015
835fc41
0e0c015
 
835fc41
 
 
 
 
 
 
0e0c015
835fc41
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad59ac8
835fc41
cf40b67
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0c015
 
cf40b67
 
 
835fc41
0e0c015
cf40b67
 
 
0e0c015
835fc41
cf40b67
0e0c015
cf40b67
835fc41
0e0c015
cf40b67
 
0e0c015
ad59ac8
 
835fc41
cf40b67
835fc41
cf40b67
835fc41
cf40b67
 
0e0c015
cf40b67
8a9a6c3
835fc41
 
 
 
cf40b67
835fc41
0e0c015
cf40b67
0e0c015
cf40b67
 
d9c0fb0
cf40b67
 
 
d9c0fb0
ad59ac8
 
cf40b67
 
 
 
 
0e0c015
cf40b67
d9c0fb0
ad59ac8
cf40b67
 
 
 
 
 
 
 
d9c0fb0
cf40b67
ad59ac8
cf40b67
d9c0fb0
cf40b67
 
 
 
d9c0fb0
cf40b67
 
d9c0fb0
cf40b67
 
 
d9c0fb0
 
 
cf40b67
 
 
 
d9c0fb0
cf40b67
 
 
d9c0fb0
cf40b67
 
 
 
d9c0fb0
cf40b67
ad59ac8
cf40b67
d9c0fb0
cf40b67
 
 
d9c0fb0
cf40b67
 
d9c0fb0
cf40b67
 
 
 
d9c0fb0
cf40b67
 
 
 
 
d9c0fb0
cf40b67
 
d9c0fb0
cf40b67
 
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
d9c0fb0
cf40b67
 
 
 
 
 
 
 
d9c0fb0
cf40b67
 
d9c0fb0
cf40b67
 
ad59ac8
 
 
 
d9c0fb0
835fc41
cf40b67
 
ad59ac8
 
cf40b67
 
ba24836
cf40b67
0e0c015
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
ad59ac8
0e0c015
cf40b67
 
ad59ac8
cf40b67
 
 
ad59ac8
cf40b67
 
8366798
 
cf40b67
 
 
 
 
 
ad59ac8
cf40b67
 
0e0c015
 
cf40b67
 
 
0e0c015
 
cf40b67
 
 
ad59ac8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import subprocess  # ๐Ÿฅฒ
import os
import time
import torch
import numpy as np
import gradio as gr
import spaces
import re
import json
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
from pydantic import BaseModel

# ----------------------- Setup & Dependency Installation ----------------------- #
try:
    subprocess.run(['git', 'lfs', 'install'], check=True)
    if not os.path.exists('Kokoro-82M'):
        subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
    
    try:
        subprocess.run(['apt-get', 'update'], check=True)
        subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
    except subprocess.CalledProcessError:
        print("Warning: Could not install espeak. Trying espeak-ng...")
        try:
            subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
        except subprocess.CalledProcessError:
            print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
except Exception as e:
    print(f"Warning: Initial setup error: {str(e)}")
    print("Continuing with limited functionality...")

# ----------------------- Global Variables ----------------------- #
# ์Œ์„ฑ ๊ด€๋ จ ๋ณ€์ˆ˜๋Š” ๋” ์ด์ƒ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ
# VOICE_CHOICES = { ... }  --> ์ œ๊ฑฐ

# ----------------------- Model and Tokenizer Initialization ----------------------- #
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

def init_models():
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map="auto",
        offload_folder="offload",
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16
    )
    return model

# ----------------------- Kokoro TTS Initialization ----------------------- #
# ์Œ์„ฑ ๊ธฐ๋Šฅ ์ œ๊ฑฐ: TTS ์ดˆ๊ธฐํ™” ๊ด€๋ จ ์ฝ”๋“œ๋Š” ๋” ์ด์ƒ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ
TTS_ENABLED = False

# ----------------------- Web Search Functions ----------------------- #
def get_web_results(query, max_results=5):
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            return [{
                "title": result.get("title", ""),
                "snippet": result["body"],
                "url": result["href"],
                "date": result.get("published", "")
            } for result in results]
    except Exception as e:
        return []

def format_prompt(query, context):
    """์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ์š”์•ฝ๋œ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค."""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context_lines = '\n'.join([f'- {res["title"]}: {res["snippet"]}' for res in context])
    return f"""You are an intelligent search assistant. Your task is to provide a concise, clear summary answer to the user's query based solely on the provided web context.
Current Time: {current_time}

Query: {query}

Web Context:
{context_lines}

Please provide a summary answer in markdown format, including citations such as [1], [2], etc. in your answer if needed.
Answer:"""

def format_sources(web_results):
    if not web_results:
        return "<div class='no-sources'>No sources available</div>"
    
    sources_html = "<div class='sources-container'>"
    for i, res in enumerate(web_results, 1):
        title = res["title"] or "Source"
        date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
        sources_html += f"""
        <div class='source-item'>
            <div class='source-number'>[{i}]</div>
            <div class='source-content'>
                <a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
                {date}
                <div class='source-snippet'>{res['snippet'][:150]}...</div>
            </div>
        </div>
        """
    sources_html += "</div>"
    return sources_html

# ----------------------- Answer Generation ----------------------- #
@spaces.GPU(duration=30)
def generate_answer(prompt):
    model = init_models()
    
    inputs = tokenizer(
        prompt, 
        return_tensors="pt", 
        padding=True,
        truncation=True,
        max_length=512,
        return_attention_mask=True
    ).to(model.device)
    
    outputs = model.generate(
        inputs.input_ids,
        attention_mask=inputs.attention_mask,
        max_new_tokens=256,
        temperature=0.7,
        top_p=0.95,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        early_stopping=True
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# ----------------------- Process Query and Output Summary ----------------------- #
def process_query(query, history):
    try:
        if history is None:
            history = []
            
        # ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
        web_results = get_web_results(query)
        sources_html = format_sources(web_results)
        
        # ์ค‘๊ฐ„ ์ƒํƒœ ํ‘œ์‹œ
        current_history = history + [[query, "*Searching...*"]]
        yield {
            answer_output: gr.Markdown("*Searching & Summarizing...*"),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Searching...", interactive=False),
            chat_history_display: current_history
        }
        
        # ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ: ์›น ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋Š” ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ
        prompt_text = format_prompt(query, web_results)
        answer = generate_answer(prompt_text)
        final_answer = answer.split("Answer:")[-1].strip()
        
        updated_history = history + [[query, final_answer]]
        yield {
            answer_output: gr.Markdown(final_answer),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: updated_history
        }
    except Exception as e:
        error_message = str(e)
        if "GPU quota" in error_message:
            error_message = "โš ๏ธ GPU quota exceeded. Please try again later when the daily quota resets."
        
        yield {
            answer_output: gr.Markdown(f"Error: {error_message}"),
            sources_output: gr.HTML(""),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: history + [[query, f"*Error: {error_message}*"]]
        }

# ----------------------- Custom CSS for Bright UI ----------------------- #
css = """
.gradio-container {
    max-width: 1200px !important;
    background-color: #ffffff !important;
    padding: 20px;
    border-radius: 12px;
}

#header {
    text-align: center;
    padding: 2rem 0;
    background: #e3f2fd;
    border-radius: 12px;
    color: #333333;
    margin-bottom: 2rem;
}

#header h1 {
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
}

.search-container {
    background: #f8f9fa;
    border-radius: 12px;
    padding: 1.5rem;
    margin-bottom: 1rem;
    border: 1px solid #e0e0e0;
}

.search-box {
    padding: 1rem;
    background: #ffffff;
    border-radius: 8px;
    margin-bottom: 1rem;
    border: 1px solid #e0e0e0;
}

.search-box input[type="text"] {
    background: #ffffff !important;
    border: 1px solid #cccccc !important;
    color: #333333 !important;
    border-radius: 8px !important;
}

.search-box input[type="text"]::placeholder {
    color: #888888 !important;
}

.search-box button {
    background: #007bff !important;
    border: none !important;
}

.results-container {
    background: #ffffff;
    border-radius: 8px;
    padding: 1.5rem;
    margin-top: 1rem;
    border: 1px solid #e0e0e0;
}

.answer-box {
    background: #f1f1f1;
    border-radius: 8px;
    padding: 1.5rem;
    color: #333333;
    margin-bottom: 1rem;
}

.answer-box p {
    color: #555555;
    line-height: 1.6;
}

.sources-container {
    margin-top: 1rem;
    background: #ffffff;
    border-radius: 8px;
    padding: 1rem;
    border: 1px solid #e0e0e0;
}

.source-item {
    display: flex;
    padding: 12px;
    margin: 8px 0;
    background: #f8f9fa;
    border-radius: 8px;
    transition: all 0.2s;
}

.source-item:hover {
    background: #e9ecef;
}

.source-number {
    font-weight: bold;
    margin-right: 12px;
    color: #007bff;
}

.source-content {
    flex: 1;
}

.source-title {
    color: #007bff;
    font-weight: 500;
    text-decoration: none;
    display: block;
    margin-bottom: 4px;
}

.source-date {
    color: #888888;
    font-size: 0.9em;
    margin-left: 8px;
}

.source-snippet {
    color: #555555;
    font-size: 0.9em;
    line-height: 1.4;
}

.chat-history {
    max-height: 400px;
    overflow-y: auto;
    padding: 1rem;
    background: #ffffff;
    border-radius: 8px;
    margin-top: 1rem;
    border: 1px solid #e0e0e0;
}

footer {
    text-align: center;
    padding: 1rem 0;
    font-size: 0.9em;
    color: #666666;
}
"""

# ----------------------- Gradio Interface ----------------------- #
with gr.Blocks(title="AI Search Assistant", css=css) as demo:
    chat_history = gr.State([])
    
    with gr.Column(elem_id="header"):
        gr.Markdown("# ๐Ÿ” AI Search Assistant")
        gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
    
    with gr.Column(elem_classes="search-container"):
        with gr.Row(elem_classes="search-box"):
            search_input = gr.Textbox(
                label="", 
                placeholder="Ask anything...", 
                scale=5,
                container=False
            )
            search_btn = gr.Button("Search", variant="primary", scale=1)
        
        with gr.Row(elem_classes="results-container"):
            with gr.Column(scale=2):
                with gr.Column(elem_classes="answer-box"):
                    answer_output = gr.Markdown()
                with gr.Accordion("Chat History", open=False):
                    chat_history_display = gr.Chatbot(elem_classes="chat-history")
            with gr.Column(scale=1):
                with gr.Column():
                    gr.Markdown("### Sources")
                    sources_output = gr.HTML()
        
        with gr.Row():
            gr.Examples(
                examples=[
                    "musk explores blockchain for doge",
                    "nvidia to launch new gaming card",
                    "What are the best practices for sustainable living?",
                    "How is climate change affecting ocean ecosystems?"
                ],
                inputs=search_input,
                label="Try these examples"
            )
    
    search_btn.click(
        fn=process_query,
        inputs=[search_input, chat_history],
        outputs=[answer_output, sources_output, search_btn, chat_history_display]
    )
    search_input.submit(
        fn=process_query,
        inputs=[search_input, chat_history],
        outputs=[answer_output, sources_output, search_btn, chat_history_display]
    )

if __name__ == "__main__":
    demo.launch(share=True)