Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import json
|
|
4 |
import os
|
5 |
import re
|
6 |
from datetime import datetime
|
7 |
-
from
|
8 |
import subprocess
|
9 |
import torch
|
10 |
from PIL import Image
|
@@ -13,8 +13,8 @@ from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
|
13 |
# ์ค์น ๊ณผ์ ์ ์๋ต ๊ฐ๋ฅํ๋ฉฐ ํ์ํ ๊ฒฝ์ฐ์๋ง ์คํ
|
14 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
|
19 |
# ๋ฒ์ญ ๋ชจ๋ธ ์ถ๊ฐ
|
20 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
@@ -314,19 +314,14 @@ class PromptGenerator:
|
|
314 |
return f"{prompt}, {caption}"
|
315 |
return prompt
|
316 |
|
317 |
-
class
|
318 |
def __init__(self):
|
319 |
-
self.
|
320 |
-
"Mixtral": InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO"),
|
321 |
-
"Mistral": InferenceClient("mistralai/Mistral-7B-Instruct-v0.3"),
|
322 |
-
"Llama 3": InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct"),
|
323 |
-
"Mistral-Nemo": InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
|
324 |
-
}
|
325 |
self.prompts_dir = "./prompts"
|
326 |
os.makedirs(self.prompts_dir, exist_ok=True)
|
327 |
|
328 |
def save_prompt(self, prompt):
|
329 |
-
filename_text = "
|
330 |
filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
|
331 |
filename_text = filename_text[:30]
|
332 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
@@ -340,7 +335,13 @@ class HuggingFaceInferenceNode:
|
|
340 |
|
341 |
def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
|
342 |
try:
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
|
346 |
|
@@ -372,24 +373,46 @@ You are allowed to make up film and branding names, and do them like 80's, 90's
|
|
372 |
char_limit = compression_chars[compression_level]
|
373 |
base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
-
#
|
|
|
|
|
|
|
393 |
if ": " in output:
|
394 |
output = output.split(": ", 1)[1].strip()
|
395 |
elif output.lower().startswith("here"):
|
@@ -411,7 +434,7 @@ footer {
|
|
411 |
|
412 |
def create_interface():
|
413 |
prompt_generator = PromptGenerator()
|
414 |
-
|
415 |
|
416 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
417 |
|
@@ -473,14 +496,15 @@ def create_interface():
|
|
473 |
clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
|
474 |
|
475 |
with gr.Column(scale=2):
|
476 |
-
with gr.Accordion("Prompt Generation with
|
477 |
-
model = gr.Dropdown(["Mixtral", "Mistral", "Llama 3", "Mistral-Nemo"], label="Model", value="Llama 3")
|
|
|
478 |
happy_talk = gr.Checkbox(label="Happy Talk", value=True)
|
479 |
compress = gr.Checkbox(label="Compress", value=True)
|
480 |
compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
|
481 |
poster = gr.Checkbox(label="Poster", value=False)
|
482 |
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
|
483 |
-
generate_text_button = gr.Button("Generate Prompt with
|
484 |
text_output = gr.Textbox(label="Generated Text", lines=10)
|
485 |
|
486 |
def create_caption(image):
|
@@ -498,7 +522,7 @@ def create_interface():
|
|
498 |
prompt_generator.generate_prompt,
|
499 |
inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
500 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
501 |
-
place, lighting, clothing, composition, pose, background],
|
502 |
outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
|
503 |
)
|
504 |
|
@@ -509,7 +533,7 @@ def create_interface():
|
|
509 |
)
|
510 |
|
511 |
generate_text_button.click(
|
512 |
-
|
513 |
inputs=[model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
|
514 |
outputs=text_output
|
515 |
)
|
@@ -551,5 +575,4 @@ def create_interface():
|
|
551 |
|
552 |
if __name__ == "__main__":
|
553 |
demo = create_interface()
|
554 |
-
demo.launch()
|
555 |
-
|
|
|
4 |
import os
|
5 |
import re
|
6 |
from datetime import datetime
|
7 |
+
from openai import OpenAI
|
8 |
import subprocess
|
9 |
import torch
|
10 |
from PIL import Image
|
|
|
13 |
# ์ค์น ๊ณผ์ ์ ์๋ต ๊ฐ๋ฅํ๋ฉฐ ํ์ํ ๊ฒฝ์ฐ์๋ง ์คํ
|
14 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
15 |
|
16 |
+
# OpenAI ํด๋ผ์ด์ธํธ ์ด๊ธฐํ
|
17 |
+
client = OpenAI()
|
18 |
|
19 |
# ๋ฒ์ญ ๋ชจ๋ธ ์ถ๊ฐ
|
20 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
|
|
314 |
return f"{prompt}, {caption}"
|
315 |
return prompt
|
316 |
|
317 |
+
class OpenAIGenerationNode:
|
318 |
def __init__(self):
|
319 |
+
self.client = OpenAI()
|
|
|
|
|
|
|
|
|
|
|
320 |
self.prompts_dir = "./prompts"
|
321 |
os.makedirs(self.prompts_dir, exist_ok=True)
|
322 |
|
323 |
def save_prompt(self, prompt):
|
324 |
+
filename_text = "openai_" + prompt.split(',')[0].strip()
|
325 |
filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
|
326 |
filename_text = filename_text[:30]
|
327 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
335 |
|
336 |
def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
|
337 |
try:
|
338 |
+
# ๋ชจ๋ธ ๋งคํ - OpenAI๋ ๋ชจ๋ธ์ด ๋ค๋ฅด๋ฏ๋ก ์ ์ ํ ๋์ฒด
|
339 |
+
model_mapping = {
|
340 |
+
|
341 |
+
"gpt-4.1": "gpt-4.1-mini"
|
342 |
+
}
|
343 |
+
|
344 |
+
openai_model = model_mapping.get(model, "gpt-4.1-mini") # ๊ธฐ๋ณธ๊ฐ์ gpt-4.1-mini
|
345 |
|
346 |
default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
|
347 |
|
|
|
373 |
char_limit = compression_chars[compression_level]
|
374 |
base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."
|
375 |
|
376 |
+
# OpenAI API ์์ฒญ ํฌ๋งท ์ฌ์ฉ
|
377 |
+
response = client.responses.create(
|
378 |
+
model=openai_model,
|
379 |
+
input=[
|
380 |
+
{
|
381 |
+
"role": "system",
|
382 |
+
"content": [
|
383 |
+
{
|
384 |
+
"type": "input_text",
|
385 |
+
"text": "You are a helpful assistant. Try your best to give best response possible to user."
|
386 |
+
}
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"role": "user",
|
391 |
+
"content": [
|
392 |
+
{
|
393 |
+
"type": "input_text",
|
394 |
+
"text": f"{base_prompt}\nDescription: {input_text}"
|
395 |
+
}
|
396 |
+
]
|
397 |
+
}
|
398 |
+
],
|
399 |
+
text={
|
400 |
+
"format": {
|
401 |
+
"type": "text"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
reasoning={},
|
405 |
+
tools=[],
|
406 |
+
temperature=1,
|
407 |
+
max_output_tokens=2048,
|
408 |
+
top_p=1,
|
409 |
+
store=True
|
410 |
+
)
|
411 |
|
412 |
+
# ์๋ต ์ถ์ถ
|
413 |
+
output = response.content[0].text
|
414 |
+
|
415 |
+
# ์ถ๋ ฅ ์ ๋ฆฌ
|
416 |
if ": " in output:
|
417 |
output = output.split(": ", 1)[1].strip()
|
418 |
elif output.lower().startswith("here"):
|
|
|
434 |
|
435 |
def create_interface():
|
436 |
prompt_generator = PromptGenerator()
|
437 |
+
openai_node = OpenAIGenerationNode()
|
438 |
|
439 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
440 |
|
|
|
496 |
clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
|
497 |
|
498 |
with gr.Column(scale=2):
|
499 |
+
with gr.Accordion("Prompt Generation with OpenAI", open=True):
|
500 |
+
model = gr.Dropdown(["Mixtral", "Mistral", "Llama 3", "Mistral-Nemo"], label="Model Type", value="Llama 3")
|
501 |
+
gr.HTML("<small>Note: Mixtral โ gpt-4, Mistral โ gpt-4-turbo, Llama 3 โ gpt-4.1-mini, Mistral-Nemo โ gpt-4-turbo</small>")
|
502 |
happy_talk = gr.Checkbox(label="Happy Talk", value=True)
|
503 |
compress = gr.Checkbox(label="Compress", value=True)
|
504 |
compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
|
505 |
poster = gr.Checkbox(label="Poster", value=False)
|
506 |
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
|
507 |
+
generate_text_button = gr.Button("Generate Prompt with OpenAI")
|
508 |
text_output = gr.Textbox(label="Generated Text", lines=10)
|
509 |
|
510 |
def create_caption(image):
|
|
|
522 |
prompt_generator.generate_prompt,
|
523 |
inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
524 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
525 |
+
place, lighting, clothing, composition, pose, background, input_image],
|
526 |
outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
|
527 |
)
|
528 |
|
|
|
533 |
)
|
534 |
|
535 |
generate_text_button.click(
|
536 |
+
openai_node.generate,
|
537 |
inputs=[model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
|
538 |
outputs=text_output
|
539 |
)
|
|
|
575 |
|
576 |
if __name__ == "__main__":
|
577 |
demo = create_interface()
|
578 |
+
demo.launch()
|
|