nyanko7 commited on
Commit
6e62cd2
·
verified ·
1 Parent(s): a02d101

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -1,6 +1,7 @@
1
  # import os
2
  import spaces
3
 
 
4
  import gradio as gr
5
  import torch
6
  from PIL import Image
@@ -62,7 +63,7 @@ class HFEmbedder(nn.Module):
62
 
63
 
64
  device = "cuda"
65
- t5 = HFEmbedder("google/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
66
  clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
67
  ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
68
  # quantize(t5, weights=qfloat8)
@@ -760,14 +761,15 @@ def generate_image(
760
  if seed == 0:
761
  seed = int(random.random() * 1000000)
762
 
763
- assert torch.cuda.is_available()
764
- torch_device = torch.device("cuda")
765
 
766
  global model, model_zero_init
767
  if not model_zero_init:
768
  model = model.to(torch_device)
769
  model_zero_init = True
770
-
 
771
  if do_img2img and init_image is not None:
772
  init_image = get_image(init_image)
773
  if resize_img:
@@ -792,9 +794,8 @@ def generate_image(
792
  timesteps = timesteps[t_idx:]
793
  x = t * x + (1.0 - t) * init_image.to(x.dtype)
794
 
795
- with torch_device:
796
- inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
797
- x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
798
 
799
  # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
800
  # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
@@ -807,7 +808,8 @@ def generate_image(
807
  x = x.clamp(-1, 1)
808
  x = rearrange(x[0], "c h w -> h w c")
809
  img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
810
-
 
811
  return img, seed
812
 
813
  def create_demo():
 
1
  # import os
2
  import spaces
3
 
4
+ import time
5
  import gradio as gr
6
  import torch
7
  from PIL import Image
 
63
 
64
 
65
  device = "cuda"
66
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
67
  clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
68
  ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
69
  # quantize(t5, weights=qfloat8)
 
761
  if seed == 0:
762
  seed = int(random.random() * 1000000)
763
 
764
+ device = "cuda" if torch.cuda.is_available() else "cpu"
765
+ torch_device = torch.device(device)
766
 
767
  global model, model_zero_init
768
  if not model_zero_init:
769
  model = model.to(torch_device)
770
  model_zero_init = True
771
+
772
+ t = time.perf_counter()
773
  if do_img2img and init_image is not None:
774
  init_image = get_image(init_image)
775
  if resize_img:
 
794
  timesteps = timesteps[t_idx:]
795
  x = t * x + (1.0 - t) * init_image.to(x.dtype)
796
 
797
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
798
+ x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
 
799
 
800
  # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
801
  # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
 
808
  x = x.clamp(-1, 1)
809
  x = rearrange(x[0], "c h w -> h w c")
810
  img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
811
+ seed += f"\nGenerated in {time.perf_counter() - t:.2f}s"
812
+
813
  return img, seed
814
 
815
  def create_demo():