Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -709,772 +709,6 @@ def create_demo():
|
|
709 |
)
|
710 |
|
711 |
|
712 |
-
with gr.Row():
|
713 |
-
with gr.Column():
|
714 |
-
prompt = gr.Textbox(label="Prompt", value="A majestic castle on top of a floating island")
|
715 |
-
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=640)
|
716 |
-
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=640)
|
717 |
-
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
|
718 |
-
inference_steps = gr.Slider(
|
719 |
-
label="Inference steps",
|
720 |
-
minimum=1,
|
721 |
-
maximum=30,
|
722 |
-
step=1,
|
723 |
-
value=16,
|
724 |
-
)
|
725 |
-
seed = gr.Number(label="Seed", precision=-1)
|
726 |
-
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
727 |
-
init_image = gr.Image(label="Initial Image", visible=False)
|
728 |
-
image2image_strength = gr.Slider(
|
729 |
-
minimum=0.0,
|
730 |
-
maximum=1.0,
|
731 |
-
step=0.01,
|
732 |
-
label="Noising Strength",
|
733 |
-
value=0.8,
|
734 |
-
visible=False
|
735 |
-
)
|
736 |
-
resize_img = gr.Checkbox(label="Resize Initial Image", value=True, visible=False)
|
737 |
-
generate_button = gr.Button("Generate", variant="primary")
|
738 |
-
with gr.Column():
|
739 |
-
output_image = gr.Image(label="Result")
|
740 |
-
output_seed = gr.Text(label="Seed Used")
|
741 |
-
|
742 |
-
do_img2img.change(
|
743 |
-
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
|
744 |
-
inputs=[do_img2img],
|
745 |
-
outputs=[init_image, image2image_strength, resize_img]
|
746 |
-
)
|
747 |
-
|
748 |
-
generate_button.click(
|
749 |
-
fn=generate_image,
|
750 |
-
inputs=[
|
751 |
-
prompt, width, height, guidance,
|
752 |
-
inference_steps, seed, do_img2img,
|
753 |
-
init_image, image2image_strength, resize_img
|
754 |
-
],
|
755 |
-
outputs=[output_image, output_seed]
|
756 |
-
)
|
757 |
-
return demo
|
758 |
-
|
759 |
-
if __name__ == "__main__":
|
760 |
-
# Create the demo
|
761 |
-
demo = create_demo()
|
762 |
-
# Enable the queue to handle concurrency
|
763 |
-
demo.queue()
|
764 |
-
# Launch with show_api=False and share=True to avoid the "bool is not iterable" error
|
765 |
-
# and the "ValueError: When localhost is not accessible..." error.
|
766 |
-
# Remove mcp_server=True as it's not a valid parameter
|
767 |
-
demo.launch(show_api=False, share=True, server_name="0.0.0.0")import os
|
768 |
-
# Comment out spaces import to avoid the error
|
769 |
-
# import spaces
|
770 |
-
|
771 |
-
import time
|
772 |
-
import gradio as gr
|
773 |
-
import torch
|
774 |
-
from PIL import Image
|
775 |
-
from torchvision import transforms
|
776 |
-
from dataclasses import dataclass, field
|
777 |
-
import math
|
778 |
-
from typing import Callable
|
779 |
-
|
780 |
-
from tqdm import tqdm
|
781 |
-
import bitsandbytes as bnb
|
782 |
-
from bitsandbytes.nn.modules import Params4bit, QuantState
|
783 |
-
|
784 |
-
import torch
|
785 |
-
import random
|
786 |
-
from einops import rearrange, repeat
|
787 |
-
from diffusers import AutoencoderKL
|
788 |
-
from torch import Tensor, nn
|
789 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
790 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
791 |
-
|
792 |
-
# ---------------- Encoders ----------------
|
793 |
-
|
794 |
-
class HFEmbedder(nn.Module):
|
795 |
-
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
796 |
-
super().__init__()
|
797 |
-
self.is_clip = version.startswith("openai")
|
798 |
-
self.max_length = max_length
|
799 |
-
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
800 |
-
|
801 |
-
if self.is_clip:
|
802 |
-
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
803 |
-
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
804 |
-
else:
|
805 |
-
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
806 |
-
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
807 |
-
|
808 |
-
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
809 |
-
|
810 |
-
def forward(self, text: list[str]) -> Tensor:
|
811 |
-
batch_encoding = self.tokenizer(
|
812 |
-
text,
|
813 |
-
truncation=True,
|
814 |
-
max_length=self.max_length,
|
815 |
-
return_length=False,
|
816 |
-
return_overflowing_tokens=False,
|
817 |
-
padding="max_length",
|
818 |
-
return_tensors="pt",
|
819 |
-
)
|
820 |
-
|
821 |
-
outputs = self.hf_module(
|
822 |
-
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
823 |
-
attention_mask=None,
|
824 |
-
output_hidden_states=False,
|
825 |
-
)
|
826 |
-
return outputs[self.output_key]
|
827 |
-
|
828 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
829 |
-
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
|
830 |
-
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
831 |
-
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
|
832 |
-
|
833 |
-
# ---------------- NF4 ----------------
|
834 |
-
|
835 |
-
def functional_linear_4bits(x, weight, bias):
|
836 |
-
import bitsandbytes as bnb
|
837 |
-
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
|
838 |
-
out = out.to(x)
|
839 |
-
return out
|
840 |
-
|
841 |
-
class ForgeParams4bit(Params4bit):
|
842 |
-
"""Subclass to force re-quantization to GPU if needed."""
|
843 |
-
def to(self, *args, **kwargs):
|
844 |
-
import torch
|
845 |
-
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
846 |
-
if device is not None and device.type == "cuda" and not self.bnb_quantized:
|
847 |
-
return self._quantize(device)
|
848 |
-
else:
|
849 |
-
n = ForgeParams4bit(
|
850 |
-
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
|
851 |
-
requires_grad=self.requires_grad,
|
852 |
-
quant_state=self.quant_state,
|
853 |
-
compress_statistics=False,
|
854 |
-
blocksize=64,
|
855 |
-
quant_type=self.quant_type,
|
856 |
-
quant_storage=self.quant_storage,
|
857 |
-
bnb_quantized=self.bnb_quantized,
|
858 |
-
module=self.module
|
859 |
-
)
|
860 |
-
self.module.quant_state = n.quant_state
|
861 |
-
self.data = n.data
|
862 |
-
self.quant_state = n.quant_state
|
863 |
-
return n
|
864 |
-
|
865 |
-
class ForgeLoader4Bit(nn.Module):
|
866 |
-
def __init__(self, *, device, dtype, quant_type, **kwargs):
|
867 |
-
super().__init__()
|
868 |
-
self.dummy = nn.Parameter(torch.empty(1, device=device, dtype=dtype))
|
869 |
-
self.weight = None
|
870 |
-
self.quant_state = None
|
871 |
-
self.bias = None
|
872 |
-
self.quant_type = quant_type
|
873 |
-
|
874 |
-
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
875 |
-
super()._save_to_state_dict(destination, prefix, keep_vars)
|
876 |
-
from bitsandbytes.nn.modules import QuantState
|
877 |
-
quant_state = getattr(self.weight, "quant_state", None)
|
878 |
-
if quant_state is not None:
|
879 |
-
for k, v in quant_state.as_dict(packed=True).items():
|
880 |
-
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
|
881 |
-
return
|
882 |
-
|
883 |
-
def _load_from_state_dict(
|
884 |
-
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
885 |
-
):
|
886 |
-
from bitsandbytes.nn.modules import Params4bit
|
887 |
-
import torch
|
888 |
-
|
889 |
-
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
|
890 |
-
if any('bitsandbytes' in k for k in quant_state_keys):
|
891 |
-
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
|
892 |
-
self.weight = ForgeParams4bit.from_prequantized(
|
893 |
-
data=state_dict[prefix + 'weight'],
|
894 |
-
quantized_stats=quant_state_dict,
|
895 |
-
requires_grad=False,
|
896 |
-
device=torch.device('cuda'),
|
897 |
-
module=self
|
898 |
-
)
|
899 |
-
self.quant_state = self.weight.quant_state
|
900 |
-
|
901 |
-
if prefix + 'bias' in state_dict:
|
902 |
-
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
903 |
-
del self.dummy
|
904 |
-
elif hasattr(self, 'dummy'):
|
905 |
-
if prefix + 'weight' in state_dict:
|
906 |
-
self.weight = ForgeParams4bit(
|
907 |
-
state_dict[prefix + 'weight'].to(self.dummy),
|
908 |
-
requires_grad=False,
|
909 |
-
compress_statistics=True,
|
910 |
-
quant_type=self.quant_type,
|
911 |
-
quant_storage=torch.uint8,
|
912 |
-
module=self,
|
913 |
-
)
|
914 |
-
self.quant_state = self.weight.quant_state
|
915 |
-
|
916 |
-
if prefix + 'bias' in state_dict:
|
917 |
-
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
918 |
-
|
919 |
-
del self.dummy
|
920 |
-
else:
|
921 |
-
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
922 |
-
|
923 |
-
class Linear(ForgeLoader4Bit):
|
924 |
-
def __init__(self, *args, device=None, dtype=None, **kwargs):
|
925 |
-
super().__init__(device=device, dtype=dtype, quant_type='nf4')
|
926 |
-
|
927 |
-
def forward(self, x):
|
928 |
-
self.weight.quant_state = self.quant_state
|
929 |
-
if self.bias is not None and self.bias.dtype != x.dtype:
|
930 |
-
self.bias.data = self.bias.data.to(x.dtype)
|
931 |
-
return functional_linear_4bits(x, self.weight, self.bias)
|
932 |
-
|
933 |
-
import torch.nn as nn
|
934 |
-
nn.Linear = Linear
|
935 |
-
|
936 |
-
# ---------------- Model ----------------
|
937 |
-
|
938 |
-
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
939 |
-
q, k = apply_rope(q, k, pe)
|
940 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
941 |
-
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
|
942 |
-
return x
|
943 |
-
|
944 |
-
def rope(pos, dim, theta):
|
945 |
-
import torch
|
946 |
-
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
947 |
-
omega = 1.0 / (theta ** scale)
|
948 |
-
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
949 |
-
cos_out = torch.cos(out)
|
950 |
-
sin_out = torch.sin(out)
|
951 |
-
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
952 |
-
b, n, d, _ = out.shape
|
953 |
-
out = out.view(b, n, d, 2, 2)
|
954 |
-
return out.float()
|
955 |
-
|
956 |
-
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
957 |
-
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
958 |
-
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
959 |
-
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
960 |
-
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
961 |
-
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
962 |
-
|
963 |
-
class EmbedND(nn.Module):
|
964 |
-
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
965 |
-
super().__init__()
|
966 |
-
self.dim = dim
|
967 |
-
self.theta = theta
|
968 |
-
self.axes_dim = axes_dim
|
969 |
-
|
970 |
-
def forward(self, ids: Tensor) -> Tensor:
|
971 |
-
import torch
|
972 |
-
n_axes = ids.shape[-1]
|
973 |
-
emb = torch.cat(
|
974 |
-
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
975 |
-
dim=-3,
|
976 |
-
)
|
977 |
-
return emb.unsqueeze(1)
|
978 |
-
|
979 |
-
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
980 |
-
import torch, math
|
981 |
-
t = time_factor * t
|
982 |
-
half = dim // 2
|
983 |
-
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
984 |
-
args = t[:, None].float() * freqs[None]
|
985 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
986 |
-
if dim % 2:
|
987 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
988 |
-
if torch.is_floating_point(t):
|
989 |
-
embedding = embedding.to(t)
|
990 |
-
return embedding
|
991 |
-
|
992 |
-
class MLPEmbedder(nn.Module):
|
993 |
-
def __init__(self, in_dim: int, hidden_dim: int):
|
994 |
-
super().__init__()
|
995 |
-
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
996 |
-
self.silu = nn.SiLU()
|
997 |
-
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
998 |
-
|
999 |
-
def forward(self, x: Tensor) -> Tensor:
|
1000 |
-
return self.out_layer(self.silu(self.in_layer(x)))
|
1001 |
-
|
1002 |
-
class RMSNorm(torch.nn.Module):
|
1003 |
-
def __init__(self, dim: int):
|
1004 |
-
super().__init__()
|
1005 |
-
self.scale = nn.Parameter(torch.ones(dim))
|
1006 |
-
|
1007 |
-
def forward(self, x: Tensor):
|
1008 |
-
import torch
|
1009 |
-
x_dtype = x.dtype
|
1010 |
-
x = x.float()
|
1011 |
-
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
1012 |
-
return (x * rrms).to(dtype=x_dtype) * self.scale
|
1013 |
-
|
1014 |
-
class QKNorm(torch.nn.Module):
|
1015 |
-
def __init__(self, dim: int):
|
1016 |
-
super().__init__()
|
1017 |
-
self.query_norm = RMSNorm(dim)
|
1018 |
-
self.key_norm = RMSNorm(dim)
|
1019 |
-
|
1020 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
1021 |
-
q = self.query_norm(q)
|
1022 |
-
k = self.key_norm(k)
|
1023 |
-
return q.to(v), k.to(v)
|
1024 |
-
|
1025 |
-
class SelfAttention(nn.Module):
|
1026 |
-
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
1027 |
-
super().__init__()
|
1028 |
-
self.num_heads = num_heads
|
1029 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
1030 |
-
head_dim = dim // num_heads
|
1031 |
-
self.norm = QKNorm(head_dim)
|
1032 |
-
self.proj = nn.Linear(dim, dim)
|
1033 |
-
|
1034 |
-
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
1035 |
-
qkv = self.qkv(x)
|
1036 |
-
B, L, _ = qkv.shape
|
1037 |
-
qkv = qkv.view(B, L, 3, self.num_heads, -1)
|
1038 |
-
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
1039 |
-
q, k = self.norm(q, k, v)
|
1040 |
-
x = attention(q, k, v, pe=pe)
|
1041 |
-
x = self.proj(x)
|
1042 |
-
return x
|
1043 |
-
|
1044 |
-
from dataclasses import dataclass
|
1045 |
-
|
1046 |
-
@dataclass
|
1047 |
-
class ModulationOut:
|
1048 |
-
shift: Tensor
|
1049 |
-
scale: Tensor
|
1050 |
-
gate: Tensor
|
1051 |
-
|
1052 |
-
class Modulation(nn.Module):
|
1053 |
-
def __init__(self, dim: int, double: bool):
|
1054 |
-
super().__init__()
|
1055 |
-
self.is_double = double
|
1056 |
-
self.multiplier = 6 if double else 3
|
1057 |
-
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
1058 |
-
|
1059 |
-
def forward(self, vec: Tensor):
|
1060 |
-
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
1061 |
-
first = ModulationOut(*out[:3])
|
1062 |
-
second = ModulationOut(*out[3:]) if self.is_double else None
|
1063 |
-
return first, second
|
1064 |
-
|
1065 |
-
class DoubleStreamBlock(nn.Module):
|
1066 |
-
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
1067 |
-
super().__init__()
|
1068 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
1069 |
-
self.num_heads = num_heads
|
1070 |
-
self.hidden_size = hidden_size
|
1071 |
-
self.img_mod = Modulation(hidden_size, double=True)
|
1072 |
-
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1073 |
-
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
1074 |
-
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1075 |
-
self.img_mlp = nn.Sequential(
|
1076 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
1077 |
-
nn.GELU(approximate="tanh"),
|
1078 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
1079 |
-
)
|
1080 |
-
self.txt_mod = Modulation(hidden_size, double=True)
|
1081 |
-
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1082 |
-
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
1083 |
-
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1084 |
-
self.txt_mlp = nn.Sequential(
|
1085 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
1086 |
-
nn.GELU(approximate="tanh"),
|
1087 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
1088 |
-
)
|
1089 |
-
|
1090 |
-
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
1091 |
-
img_mod1, img_mod2 = self.img_mod(vec)
|
1092 |
-
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
1093 |
-
|
1094 |
-
# Image attention
|
1095 |
-
img_modulated = self.img_norm1(img)
|
1096 |
-
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
1097 |
-
img_qkv = self.img_attn.qkv(img_modulated)
|
1098 |
-
B, L, _ = img_qkv.shape
|
1099 |
-
H = self.num_heads
|
1100 |
-
D = img_qkv.shape[-1] // (3 * H)
|
1101 |
-
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
1102 |
-
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
1103 |
-
|
1104 |
-
# Text attention
|
1105 |
-
txt_modulated = self.txt_norm1(txt)
|
1106 |
-
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
1107 |
-
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
1108 |
-
B, L, _ = txt_qkv.shape
|
1109 |
-
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
1110 |
-
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
1111 |
-
|
1112 |
-
# Combined attention
|
1113 |
-
q = torch.cat((txt_q, img_q), dim=2)
|
1114 |
-
k = torch.cat((txt_k, img_k), dim=2)
|
1115 |
-
v = torch.cat((txt_v, img_v), dim=2)
|
1116 |
-
attn = attention(q, k, v, pe=pe)
|
1117 |
-
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
1118 |
-
|
1119 |
-
# Img final
|
1120 |
-
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
1121 |
-
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
1122 |
-
|
1123 |
-
# Text final
|
1124 |
-
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
1125 |
-
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
1126 |
-
return img, txt
|
1127 |
-
|
1128 |
-
class SingleStreamBlock(nn.Module):
|
1129 |
-
def __init__(
|
1130 |
-
self,
|
1131 |
-
hidden_size: int,
|
1132 |
-
num_heads: int,
|
1133 |
-
mlp_ratio: float = 4.0,
|
1134 |
-
qk_scale: float | None = None,
|
1135 |
-
):
|
1136 |
-
super().__init__()
|
1137 |
-
self.hidden_dim = hidden_size
|
1138 |
-
self.num_heads = num_heads
|
1139 |
-
head_dim = hidden_size // num_heads
|
1140 |
-
self.scale = qk_scale or head_dim**-0.5
|
1141 |
-
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
1142 |
-
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
1143 |
-
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
1144 |
-
self.norm = QKNorm(head_dim)
|
1145 |
-
self.hidden_size = hidden_size
|
1146 |
-
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1147 |
-
self.mlp_act = nn.GELU(approximate="tanh")
|
1148 |
-
self.modulation = Modulation(hidden_size, double=False)
|
1149 |
-
|
1150 |
-
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
1151 |
-
mod, _ = self.modulation(vec)
|
1152 |
-
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
1153 |
-
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
1154 |
-
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
|
1155 |
-
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
1156 |
-
q, k = self.norm(q, k, v)
|
1157 |
-
attn = attention(q, k, v, pe=pe)
|
1158 |
-
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
1159 |
-
return x + mod.gate * output
|
1160 |
-
|
1161 |
-
class LastLayer(nn.Module):
|
1162 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
1163 |
-
super().__init__()
|
1164 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
1165 |
-
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
1166 |
-
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
1167 |
-
|
1168 |
-
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
1169 |
-
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
1170 |
-
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
1171 |
-
x = self.linear(x)
|
1172 |
-
return x
|
1173 |
-
|
1174 |
-
from dataclasses import dataclass, field
|
1175 |
-
|
1176 |
-
@dataclass
|
1177 |
-
class FluxParams:
|
1178 |
-
in_channels: int = 64
|
1179 |
-
vec_in_dim: int = 768
|
1180 |
-
context_in_dim: int = 4096
|
1181 |
-
hidden_size: int = 3072
|
1182 |
-
mlp_ratio: float = 4.0
|
1183 |
-
num_heads: int = 24
|
1184 |
-
depth: int = 19
|
1185 |
-
depth_single_blocks: int = 38
|
1186 |
-
axes_dim: list[int] = field(default_factory=lambda: [16, 56, 56])
|
1187 |
-
theta: int = 10000
|
1188 |
-
qkv_bias: bool = True
|
1189 |
-
guidance_embed: bool = True
|
1190 |
-
|
1191 |
-
class Flux(nn.Module):
|
1192 |
-
def __init__(self, params = FluxParams()):
|
1193 |
-
super().__init__()
|
1194 |
-
self.params = params
|
1195 |
-
self.in_channels = params.in_channels
|
1196 |
-
self.out_channels = self.in_channels
|
1197 |
-
if params.hidden_size % params.num_heads != 0:
|
1198 |
-
raise ValueError(
|
1199 |
-
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
1200 |
-
)
|
1201 |
-
pe_dim = params.hidden_size // params.num_heads
|
1202 |
-
if sum(params.axes_dim) != pe_dim:
|
1203 |
-
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
1204 |
-
self.hidden_size = params.hidden_size
|
1205 |
-
self.num_heads = params.num_heads
|
1206 |
-
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
1207 |
-
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
1208 |
-
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
1209 |
-
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
1210 |
-
self.guidance_in = (
|
1211 |
-
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
1212 |
-
)
|
1213 |
-
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
1214 |
-
|
1215 |
-
self.double_blocks = nn.ModuleList(
|
1216 |
-
[
|
1217 |
-
DoubleStreamBlock(
|
1218 |
-
self.hidden_size,
|
1219 |
-
self.num_heads,
|
1220 |
-
mlp_ratio=params.mlp_ratio,
|
1221 |
-
qkv_bias=params.qkv_bias,
|
1222 |
-
)
|
1223 |
-
for _ in range(params.depth)
|
1224 |
-
]
|
1225 |
-
)
|
1226 |
-
|
1227 |
-
self.single_blocks = nn.ModuleList(
|
1228 |
-
[
|
1229 |
-
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
1230 |
-
for _ in range(params.depth_single_blocks)
|
1231 |
-
]
|
1232 |
-
)
|
1233 |
-
|
1234 |
-
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
1235 |
-
|
1236 |
-
def forward(
|
1237 |
-
self,
|
1238 |
-
img: Tensor,
|
1239 |
-
img_ids: Tensor,
|
1240 |
-
txt: Tensor,
|
1241 |
-
txt_ids: Tensor,
|
1242 |
-
timesteps: Tensor,
|
1243 |
-
y: Tensor,
|
1244 |
-
guidance: Tensor | None = None,
|
1245 |
-
) -> Tensor:
|
1246 |
-
if img.ndim != 3 or txt.ndim != 3:
|
1247 |
-
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
1248 |
-
img = self.img_in(img)
|
1249 |
-
vec = self.time_in(timestep_embedding(timesteps, 256))
|
1250 |
-
if self.params.guidance_embed:
|
1251 |
-
if guidance is None:
|
1252 |
-
raise ValueError("No guidance strength provided for guidance-distilled model.")
|
1253 |
-
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
1254 |
-
vec = vec + self.vector_in(y)
|
1255 |
-
txt = self.txt_in(txt)
|
1256 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
1257 |
-
pe = self.pe_embedder(ids)
|
1258 |
-
for block in self.double_blocks:
|
1259 |
-
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
1260 |
-
img = torch.cat((txt, img), 1)
|
1261 |
-
for block in self.single_blocks:
|
1262 |
-
img = block(img, vec=vec, pe=pe)
|
1263 |
-
img = img[:, txt.shape[1] :, ...]
|
1264 |
-
img = self.final_layer(img, vec)
|
1265 |
-
return img
|
1266 |
-
|
1267 |
-
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
1268 |
-
import torch
|
1269 |
-
bs, c, h, w = img.shape
|
1270 |
-
if bs == 1 and not isinstance(prompt, str):
|
1271 |
-
bs = len(prompt)
|
1272 |
-
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
1273 |
-
if img.shape[0] == 1 and bs > 1:
|
1274 |
-
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
1275 |
-
img_ids = torch.zeros(h // 2, w // 2, 3)
|
1276 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
1277 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
1278 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
1279 |
-
if isinstance(prompt, str):
|
1280 |
-
prompt = [prompt]
|
1281 |
-
txt = t5(prompt)
|
1282 |
-
if txt.shape[0] == 1 and bs > 1:
|
1283 |
-
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
1284 |
-
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
1285 |
-
vec = clip(prompt)
|
1286 |
-
if vec.shape[0] == 1 and bs > 1:
|
1287 |
-
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
1288 |
-
return {
|
1289 |
-
"img": img,
|
1290 |
-
"img_ids": img_ids.to(img.device),
|
1291 |
-
"txt": txt.to(img.device),
|
1292 |
-
"txt_ids": txt_ids.to(img.device),
|
1293 |
-
"vec": vec.to(img.device),
|
1294 |
-
}
|
1295 |
-
|
1296 |
-
def time_shift(mu: float, sigma: float, t: Tensor):
|
1297 |
-
import math
|
1298 |
-
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
1299 |
-
|
1300 |
-
def get_lin_function(
|
1301 |
-
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
1302 |
-
) -> Callable[[float], float]:
|
1303 |
-
import math
|
1304 |
-
m = (y2 - y1) / (x2 - x1)
|
1305 |
-
b = y1 - m * x1
|
1306 |
-
return lambda x: m * x + b
|
1307 |
-
|
1308 |
-
def get_schedule(
|
1309 |
-
num_steps: int,
|
1310 |
-
image_seq_len: int,
|
1311 |
-
base_shift: float = 0.5,
|
1312 |
-
max_shift: float = 1.15,
|
1313 |
-
shift: bool = True,
|
1314 |
-
) -> list[float]:
|
1315 |
-
import torch
|
1316 |
-
import math
|
1317 |
-
timesteps = torch.linspace(1, 0, num_steps + 1)
|
1318 |
-
if shift:
|
1319 |
-
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
1320 |
-
timesteps = time_shift(mu, 1.0, timesteps)
|
1321 |
-
return timesteps.tolist()
|
1322 |
-
|
1323 |
-
def denoise(
|
1324 |
-
model: Flux,
|
1325 |
-
img: Tensor,
|
1326 |
-
img_ids: Tensor,
|
1327 |
-
txt: Tensor,
|
1328 |
-
txt_ids: Tensor,
|
1329 |
-
vec: Tensor,
|
1330 |
-
timesteps: list[float],
|
1331 |
-
guidance: float = 4.0,
|
1332 |
-
):
|
1333 |
-
import torch
|
1334 |
-
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
1335 |
-
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
|
1336 |
-
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
1337 |
-
pred = model(
|
1338 |
-
img=img,
|
1339 |
-
img_ids=img_ids,
|
1340 |
-
txt=txt,
|
1341 |
-
txt_ids=txt_ids,
|
1342 |
-
y=vec,
|
1343 |
-
timesteps=t_vec,
|
1344 |
-
guidance=guidance_vec,
|
1345 |
-
)
|
1346 |
-
img = img + (t_prev - t_curr) * pred
|
1347 |
-
return img
|
1348 |
-
|
1349 |
-
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
1350 |
-
return rearrange(
|
1351 |
-
x,
|
1352 |
-
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
1353 |
-
h=math.ceil(height / 16),
|
1354 |
-
w=math.ceil(width / 16),
|
1355 |
-
ph=2,
|
1356 |
-
pw=2,
|
1357 |
-
)
|
1358 |
-
|
1359 |
-
@dataclass
|
1360 |
-
class SamplingOptions:
|
1361 |
-
prompt: str
|
1362 |
-
width: int
|
1363 |
-
height: int
|
1364 |
-
guidance: float
|
1365 |
-
seed: int | None
|
1366 |
-
|
1367 |
-
def get_image(image) -> torch.Tensor | None:
|
1368 |
-
if image is None:
|
1369 |
-
return None
|
1370 |
-
image = Image.fromarray(image).convert("RGB")
|
1371 |
-
transform = transforms.Compose([
|
1372 |
-
transforms.ToTensor(),
|
1373 |
-
transforms.Lambda(lambda x: 2.0 * x - 1.0),
|
1374 |
-
])
|
1375 |
-
img: torch.Tensor = transform(image)
|
1376 |
-
return img[None, ...]
|
1377 |
-
|
1378 |
-
# Load the NF4 quantized checkpoint
|
1379 |
-
from huggingface_hub import hf_hub_download
|
1380 |
-
from safetensors.torch import load_file
|
1381 |
-
|
1382 |
-
sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
|
1383 |
-
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
|
1384 |
-
model = Flux().to(dtype=torch.bfloat16, device=device)
|
1385 |
-
result = model.load_state_dict(sd)
|
1386 |
-
model_zero_init = False
|
1387 |
-
|
1388 |
-
# Remove @spaces.GPU decorator - we'll handle GPU allocation manually
|
1389 |
-
# @spaces.GPU
|
1390 |
-
@torch.no_grad()
|
1391 |
-
def generate_image(
|
1392 |
-
prompt, width, height, guidance, inference_steps, seed,
|
1393 |
-
do_img2img, init_image, image2image_strength, resize_img,
|
1394 |
-
progress=gr.Progress(track_tqdm=True),
|
1395 |
-
):
|
1396 |
-
if seed == 0:
|
1397 |
-
seed = int(random.random() * 1_000_000)
|
1398 |
-
|
1399 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
1400 |
-
torch_device = torch.device(device)
|
1401 |
-
|
1402 |
-
global model, model_zero_init
|
1403 |
-
if not model_zero_init:
|
1404 |
-
model = model.to(torch_device)
|
1405 |
-
model_zero_init = True
|
1406 |
-
|
1407 |
-
if do_img2img and init_image is not None:
|
1408 |
-
init_image = get_image(init_image)
|
1409 |
-
if resize_img:
|
1410 |
-
init_image = torch.nn.functional.interpolate(init_image, (height, width))
|
1411 |
-
else:
|
1412 |
-
h, w = init_image.shape[-2:]
|
1413 |
-
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
|
1414 |
-
height = init_image.shape[-2]
|
1415 |
-
width = init_image.shape[-1]
|
1416 |
-
init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
|
1417 |
-
init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
|
1418 |
-
|
1419 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
1420 |
-
x = torch.randn(
|
1421 |
-
1,
|
1422 |
-
16,
|
1423 |
-
2 * math.ceil(height / 16),
|
1424 |
-
2 * math.ceil(width / 16),
|
1425 |
-
device=device,
|
1426 |
-
dtype=torch.bfloat16,
|
1427 |
-
generator=generator
|
1428 |
-
)
|
1429 |
-
|
1430 |
-
timesteps = get_schedule(inference_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
1431 |
-
|
1432 |
-
if do_img2img and init_image is not None:
|
1433 |
-
t_idx = int((1 - image2image_strength) * inference_steps)
|
1434 |
-
t = timesteps[t_idx]
|
1435 |
-
timesteps = timesteps[t_idx:]
|
1436 |
-
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
1437 |
-
|
1438 |
-
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
1439 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
|
1440 |
-
x = unpack(x.float(), height, width)
|
1441 |
-
|
1442 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
1443 |
-
x = (x / ae.config.scaling_factor) + ae.config.shift_factor
|
1444 |
-
x = ae.decode(x).sample
|
1445 |
-
|
1446 |
-
x = x.clamp(-1, 1)
|
1447 |
-
x = rearrange(x[0], "c h w -> h w c")
|
1448 |
-
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
1449 |
-
return img, seed
|
1450 |
-
|
1451 |
-
def create_demo():
|
1452 |
-
with gr.Blocks(css=".gradio-container {background-color: #282828 !important;}") as demo:
|
1453 |
-
gr.HTML(
|
1454 |
-
"""
|
1455 |
-
<div style="text-align: center; margin: 0 auto;">
|
1456 |
-
<h1 style="color: #ffffff; font-weight: 900;">
|
1457 |
-
FluxLLama
|
1458 |
-
</h1>
|
1459 |
-
</div>
|
1460 |
-
"""
|
1461 |
-
)
|
1462 |
-
|
1463 |
-
gr.HTML(
|
1464 |
-
"""
|
1465 |
-
<div class='container' style='display:flex; justify-content:center; gap:12px;'>
|
1466 |
-
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
|
1467 |
-
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
|
1468 |
-
</a>
|
1469 |
-
|
1470 |
-
<a href="https://discord.gg/openfreeai" target="_blank">
|
1471 |
-
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
|
1472 |
-
</a>
|
1473 |
-
</div>
|
1474 |
-
"""
|
1475 |
-
)
|
1476 |
-
|
1477 |
-
|
1478 |
with gr.Row():
|
1479 |
with gr.Column():
|
1480 |
prompt = gr.Textbox(label="Prompt", value="A majestic castle on top of a floating island")
|
|
|
709 |
)
|
710 |
|
711 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
with gr.Row():
|
713 |
with gr.Column():
|
714 |
prompt = gr.Textbox(label="Prompt", value="A majestic castle on top of a floating island")
|