Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -66,42 +66,15 @@ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="va
|
|
66 |
# ---------------- NF4 ----------------
|
67 |
|
68 |
def functional_linear_4bits(x, weight, bias):
|
|
|
69 |
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
|
70 |
out = out.to(x)
|
71 |
return out
|
72 |
|
73 |
-
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
|
74 |
-
if state is None:
|
75 |
-
return None
|
76 |
-
|
77 |
-
device = device or state.absmax.device
|
78 |
-
|
79 |
-
state2 = (
|
80 |
-
QuantState(
|
81 |
-
absmax=state.state2.absmax.to(device),
|
82 |
-
shape=state.state2.shape,
|
83 |
-
code=state.state2.code.to(device),
|
84 |
-
blocksize=state.state2.blocksize,
|
85 |
-
quant_type=state.state2.quant_type,
|
86 |
-
dtype=state.state2.dtype,
|
87 |
-
)
|
88 |
-
if state.nested
|
89 |
-
else None
|
90 |
-
)
|
91 |
-
|
92 |
-
return QuantState(
|
93 |
-
absmax=state.absmax.to(device),
|
94 |
-
shape=state.shape,
|
95 |
-
code=state.code.to(device),
|
96 |
-
blocksize=state.blocksize,
|
97 |
-
quant_type=state.quant_type,
|
98 |
-
dtype=state.dtype,
|
99 |
-
offset=state.offset.to(device) if state.nested else None,
|
100 |
-
state2=state2,
|
101 |
-
)
|
102 |
-
|
103 |
class ForgeParams4bit(Params4bit):
|
|
|
104 |
def to(self, *args, **kwargs):
|
|
|
105 |
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
106 |
if device is not None and device.type == "cuda" and not self.bnb_quantized:
|
107 |
return self._quantize(device)
|
@@ -109,7 +82,7 @@ class ForgeParams4bit(Params4bit):
|
|
109 |
n = ForgeParams4bit(
|
110 |
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
|
111 |
requires_grad=self.requires_grad,
|
112 |
-
quant_state=
|
113 |
compress_statistics=False,
|
114 |
blocksize=64,
|
115 |
quant_type=self.quant_type,
|
@@ -122,10 +95,10 @@ class ForgeParams4bit(Params4bit):
|
|
122 |
self.quant_state = n.quant_state
|
123 |
return n
|
124 |
|
125 |
-
class ForgeLoader4Bit(
|
126 |
def __init__(self, *, device, dtype, quant_type, **kwargs):
|
127 |
super().__init__()
|
128 |
-
self.dummy =
|
129 |
self.weight = None
|
130 |
self.quant_state = None
|
131 |
self.bias = None
|
@@ -133,18 +106,22 @@ class ForgeLoader4Bit(torch.nn.Module):
|
|
133 |
|
134 |
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
135 |
super()._save_to_state_dict(destination, prefix, keep_vars)
|
|
|
136 |
quant_state = getattr(self.weight, "quant_state", None)
|
137 |
if quant_state is not None:
|
138 |
for k, v in quant_state.as_dict(packed=True).items():
|
139 |
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
|
140 |
return
|
141 |
|
142 |
-
def _load_from_state_dict(
|
143 |
-
|
|
|
|
|
|
|
144 |
|
|
|
145 |
if any('bitsandbytes' in k for k in quant_state_keys):
|
146 |
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
|
147 |
-
|
148 |
self.weight = ForgeParams4bit.from_prequantized(
|
149 |
data=state_dict[prefix + 'weight'],
|
150 |
quantized_stats=quant_state_dict,
|
@@ -156,7 +133,6 @@ class ForgeLoader4Bit(torch.nn.Module):
|
|
156 |
|
157 |
if prefix + 'bias' in state_dict:
|
158 |
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
159 |
-
|
160 |
del self.dummy
|
161 |
elif hasattr(self, 'dummy'):
|
162 |
if prefix + 'weight' in state_dict:
|
@@ -183,12 +159,11 @@ class Linear(ForgeLoader4Bit):
|
|
183 |
|
184 |
def forward(self, x):
|
185 |
self.weight.quant_state = self.quant_state
|
186 |
-
|
187 |
if self.bias is not None and self.bias.dtype != x.dtype:
|
188 |
self.bias.data = self.bias.data.to(x.dtype)
|
189 |
-
|
190 |
return functional_linear_4bits(x, self.weight, self.bias)
|
191 |
|
|
|
192 |
nn.Linear = Linear
|
193 |
|
194 |
# ---------------- Model ----------------
|
@@ -200,6 +175,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
|
200 |
return x
|
201 |
|
202 |
def rope(pos, dim, theta):
|
|
|
203 |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
204 |
omega = 1.0 / (theta ** scale)
|
205 |
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
@@ -225,6 +201,7 @@ class EmbedND(nn.Module):
|
|
225 |
self.axes_dim = axes_dim
|
226 |
|
227 |
def forward(self, ids: Tensor) -> Tensor:
|
|
|
228 |
n_axes = ids.shape[-1]
|
229 |
emb = torch.cat(
|
230 |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
@@ -233,6 +210,7 @@ class EmbedND(nn.Module):
|
|
233 |
return emb.unsqueeze(1)
|
234 |
|
235 |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
|
|
236 |
t = time_factor * t
|
237 |
half = dim // 2
|
238 |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
@@ -260,6 +238,7 @@ class RMSNorm(torch.nn.Module):
|
|
260 |
self.scale = nn.Parameter(torch.ones(dim))
|
261 |
|
262 |
def forward(self, x: Tensor):
|
|
|
263 |
x_dtype = x.dtype
|
264 |
x = x.float()
|
265 |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
@@ -295,6 +274,8 @@ class SelfAttention(nn.Module):
|
|
295 |
x = self.proj(x)
|
296 |
return x
|
297 |
|
|
|
|
|
298 |
@dataclass
|
299 |
class ModulationOut:
|
300 |
shift: Tensor
|
@@ -308,12 +289,11 @@ class Modulation(nn.Module):
|
|
308 |
self.multiplier = 6 if double else 3
|
309 |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
310 |
|
311 |
-
def forward(self, vec: Tensor)
|
312 |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
)
|
317 |
|
318 |
class DoubleStreamBlock(nn.Module):
|
319 |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
@@ -424,6 +404,8 @@ class LastLayer(nn.Module):
|
|
424 |
x = self.linear(x)
|
425 |
return x
|
426 |
|
|
|
|
|
427 |
@dataclass
|
428 |
class FluxParams:
|
429 |
in_channels: int = 64
|
@@ -516,6 +498,7 @@ class Flux(nn.Module):
|
|
516 |
return img
|
517 |
|
518 |
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
|
|
519 |
bs, c, h, w = img.shape
|
520 |
if bs == 1 and not isinstance(prompt, str):
|
521 |
bs = len(prompt)
|
@@ -544,11 +527,13 @@ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[st
|
|
544 |
}
|
545 |
|
546 |
def time_shift(mu: float, sigma: float, t: Tensor):
|
|
|
547 |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
548 |
|
549 |
def get_lin_function(
|
550 |
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
551 |
) -> Callable[[float], float]:
|
|
|
552 |
m = (y2 - y1) / (x2 - x1)
|
553 |
b = y1 - m * x1
|
554 |
return lambda x: m * x + b
|
@@ -560,6 +545,8 @@ def get_schedule(
|
|
560 |
max_shift: float = 1.15,
|
561 |
shift: bool = True,
|
562 |
) -> list[float]:
|
|
|
|
|
563 |
timesteps = torch.linspace(1, 0, num_steps + 1)
|
564 |
if shift:
|
565 |
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
@@ -567,7 +554,7 @@ def get_schedule(
|
|
567 |
return timesteps.tolist()
|
568 |
|
569 |
def denoise(
|
570 |
-
model:
|
571 |
img: Tensor,
|
572 |
img_ids: Tensor,
|
573 |
txt: Tensor,
|
@@ -576,6 +563,7 @@ def denoise(
|
|
576 |
timesteps: list[float],
|
577 |
guidance: float = 4.0,
|
578 |
):
|
|
|
579 |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
580 |
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
|
581 |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
@@ -620,6 +608,7 @@ def get_image(image) -> torch.Tensor | None:
|
|
620 |
img: torch.Tensor = transform(image)
|
621 |
return img[None, ...]
|
622 |
|
|
|
623 |
from huggingface_hub import hf_hub_download
|
624 |
from safetensors.torch import load_file
|
625 |
|
@@ -637,16 +626,16 @@ def generate_image(
|
|
637 |
progress=gr.Progress(track_tqdm=True),
|
638 |
):
|
639 |
if seed == 0:
|
640 |
-
seed = int(random.random() *
|
641 |
-
|
642 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
643 |
torch_device = torch.device(device)
|
644 |
-
|
645 |
global model, model_zero_init
|
646 |
if not model_zero_init:
|
647 |
model = model.to(torch_device)
|
648 |
model_zero_init = True
|
649 |
-
|
650 |
if do_img2img and init_image is not None:
|
651 |
init_image = get_image(init_image)
|
652 |
if resize_img:
|
@@ -670,11 +659,10 @@ def generate_image(
|
|
670 |
generator=generator
|
671 |
)
|
672 |
|
673 |
-
|
674 |
-
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
675 |
|
676 |
if do_img2img and init_image is not None:
|
677 |
-
t_idx = int((1 - image2image_strength) *
|
678 |
t = timesteps[t_idx]
|
679 |
timesteps = timesteps[t_idx:]
|
680 |
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
@@ -682,9 +670,11 @@ def generate_image(
|
|
682 |
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
683 |
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
|
684 |
x = unpack(x.float(), height, width)
|
|
|
685 |
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
686 |
x = (x / ae.config.scaling_factor) + ae.config.shift_factor
|
687 |
x = ae.decode(x).sample
|
|
|
688 |
x = x.clamp(-1, 1)
|
689 |
x = rearrange(x[0], "c h w -> h w c")
|
690 |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
@@ -717,7 +707,14 @@ def create_demo():
|
|
717 |
seed = gr.Number(label="Seed", precision=-1)
|
718 |
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
719 |
init_image = gr.Image(label="Initial Image", visible=False)
|
720 |
-
image2image_strength = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
resize_img = gr.Checkbox(label="Resize Initial Image", value=True, visible=False)
|
722 |
generate_button = gr.Button("Generate", variant="primary")
|
723 |
with gr.Column():
|
@@ -732,11 +729,20 @@ def create_demo():
|
|
732 |
|
733 |
generate_button.click(
|
734 |
fn=generate_image,
|
735 |
-
inputs=[
|
|
|
|
|
|
|
|
|
736 |
outputs=[output_image, output_seed]
|
737 |
)
|
738 |
return demo
|
739 |
|
740 |
if __name__ == "__main__":
|
|
|
741 |
demo = create_demo()
|
742 |
-
|
|
|
|
|
|
|
|
|
|
66 |
# ---------------- NF4 ----------------
|
67 |
|
68 |
def functional_linear_4bits(x, weight, bias):
|
69 |
+
import bitsandbytes as bnb
|
70 |
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
|
71 |
out = out.to(x)
|
72 |
return out
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
class ForgeParams4bit(Params4bit):
|
75 |
+
"""Subclass to force re-quantization to GPU if needed."""
|
76 |
def to(self, *args, **kwargs):
|
77 |
+
import torch
|
78 |
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
79 |
if device is not None and device.type == "cuda" and not self.bnb_quantized:
|
80 |
return self._quantize(device)
|
|
|
82 |
n = ForgeParams4bit(
|
83 |
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
|
84 |
requires_grad=self.requires_grad,
|
85 |
+
quant_state=self.quant_state,
|
86 |
compress_statistics=False,
|
87 |
blocksize=64,
|
88 |
quant_type=self.quant_type,
|
|
|
95 |
self.quant_state = n.quant_state
|
96 |
return n
|
97 |
|
98 |
+
class ForgeLoader4Bit(nn.Module):
|
99 |
def __init__(self, *, device, dtype, quant_type, **kwargs):
|
100 |
super().__init__()
|
101 |
+
self.dummy = nn.Parameter(torch.empty(1, device=device, dtype=dtype))
|
102 |
self.weight = None
|
103 |
self.quant_state = None
|
104 |
self.bias = None
|
|
|
106 |
|
107 |
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
108 |
super()._save_to_state_dict(destination, prefix, keep_vars)
|
109 |
+
from bitsandbytes.nn.modules import QuantState
|
110 |
quant_state = getattr(self.weight, "quant_state", None)
|
111 |
if quant_state is not None:
|
112 |
for k, v in quant_state.as_dict(packed=True).items():
|
113 |
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
|
114 |
return
|
115 |
|
116 |
+
def _load_from_state_dict(
|
117 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
118 |
+
):
|
119 |
+
from bitsandbytes.nn.modules import Params4bit
|
120 |
+
import torch
|
121 |
|
122 |
+
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
|
123 |
if any('bitsandbytes' in k for k in quant_state_keys):
|
124 |
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
|
|
|
125 |
self.weight = ForgeParams4bit.from_prequantized(
|
126 |
data=state_dict[prefix + 'weight'],
|
127 |
quantized_stats=quant_state_dict,
|
|
|
133 |
|
134 |
if prefix + 'bias' in state_dict:
|
135 |
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
|
|
136 |
del self.dummy
|
137 |
elif hasattr(self, 'dummy'):
|
138 |
if prefix + 'weight' in state_dict:
|
|
|
159 |
|
160 |
def forward(self, x):
|
161 |
self.weight.quant_state = self.quant_state
|
|
|
162 |
if self.bias is not None and self.bias.dtype != x.dtype:
|
163 |
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
164 |
return functional_linear_4bits(x, self.weight, self.bias)
|
165 |
|
166 |
+
import torch.nn as nn
|
167 |
nn.Linear = Linear
|
168 |
|
169 |
# ---------------- Model ----------------
|
|
|
175 |
return x
|
176 |
|
177 |
def rope(pos, dim, theta):
|
178 |
+
import torch
|
179 |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
180 |
omega = 1.0 / (theta ** scale)
|
181 |
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
|
|
201 |
self.axes_dim = axes_dim
|
202 |
|
203 |
def forward(self, ids: Tensor) -> Tensor:
|
204 |
+
import torch
|
205 |
n_axes = ids.shape[-1]
|
206 |
emb = torch.cat(
|
207 |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
|
|
210 |
return emb.unsqueeze(1)
|
211 |
|
212 |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
213 |
+
import torch, math
|
214 |
t = time_factor * t
|
215 |
half = dim // 2
|
216 |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
|
|
238 |
self.scale = nn.Parameter(torch.ones(dim))
|
239 |
|
240 |
def forward(self, x: Tensor):
|
241 |
+
import torch
|
242 |
x_dtype = x.dtype
|
243 |
x = x.float()
|
244 |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
|
|
274 |
x = self.proj(x)
|
275 |
return x
|
276 |
|
277 |
+
from dataclasses import dataclass
|
278 |
+
|
279 |
@dataclass
|
280 |
class ModulationOut:
|
281 |
shift: Tensor
|
|
|
289 |
self.multiplier = 6 if double else 3
|
290 |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
291 |
|
292 |
+
def forward(self, vec: Tensor):
|
293 |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
294 |
+
first = ModulationOut(*out[:3])
|
295 |
+
second = ModulationOut(*out[3:]) if self.is_double else None
|
296 |
+
return first, second
|
|
|
297 |
|
298 |
class DoubleStreamBlock(nn.Module):
|
299 |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
|
|
404 |
x = self.linear(x)
|
405 |
return x
|
406 |
|
407 |
+
from dataclasses import dataclass, field
|
408 |
+
|
409 |
@dataclass
|
410 |
class FluxParams:
|
411 |
in_channels: int = 64
|
|
|
498 |
return img
|
499 |
|
500 |
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
501 |
+
import torch
|
502 |
bs, c, h, w = img.shape
|
503 |
if bs == 1 and not isinstance(prompt, str):
|
504 |
bs = len(prompt)
|
|
|
527 |
}
|
528 |
|
529 |
def time_shift(mu: float, sigma: float, t: Tensor):
|
530 |
+
import math
|
531 |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
532 |
|
533 |
def get_lin_function(
|
534 |
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
535 |
) -> Callable[[float], float]:
|
536 |
+
import math
|
537 |
m = (y2 - y1) / (x2 - x1)
|
538 |
b = y1 - m * x1
|
539 |
return lambda x: m * x + b
|
|
|
545 |
max_shift: float = 1.15,
|
546 |
shift: bool = True,
|
547 |
) -> list[float]:
|
548 |
+
import torch
|
549 |
+
import math
|
550 |
timesteps = torch.linspace(1, 0, num_steps + 1)
|
551 |
if shift:
|
552 |
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
|
|
554 |
return timesteps.tolist()
|
555 |
|
556 |
def denoise(
|
557 |
+
model: Flux,
|
558 |
img: Tensor,
|
559 |
img_ids: Tensor,
|
560 |
txt: Tensor,
|
|
|
563 |
timesteps: list[float],
|
564 |
guidance: float = 4.0,
|
565 |
):
|
566 |
+
import torch
|
567 |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
568 |
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
|
569 |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
|
|
608 |
img: torch.Tensor = transform(image)
|
609 |
return img[None, ...]
|
610 |
|
611 |
+
# Load the NF4 quantized checkpoint
|
612 |
from huggingface_hub import hf_hub_download
|
613 |
from safetensors.torch import load_file
|
614 |
|
|
|
626 |
progress=gr.Progress(track_tqdm=True),
|
627 |
):
|
628 |
if seed == 0:
|
629 |
+
seed = int(random.random() * 1_000_000)
|
630 |
+
|
631 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
632 |
torch_device = torch.device(device)
|
633 |
+
|
634 |
global model, model_zero_init
|
635 |
if not model_zero_init:
|
636 |
model = model.to(torch_device)
|
637 |
model_zero_init = True
|
638 |
+
|
639 |
if do_img2img and init_image is not None:
|
640 |
init_image = get_image(init_image)
|
641 |
if resize_img:
|
|
|
659 |
generator=generator
|
660 |
)
|
661 |
|
662 |
+
timesteps = get_schedule(inference_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
|
|
663 |
|
664 |
if do_img2img and init_image is not None:
|
665 |
+
t_idx = int((1 - image2image_strength) * inference_steps)
|
666 |
t = timesteps[t_idx]
|
667 |
timesteps = timesteps[t_idx:]
|
668 |
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
|
|
670 |
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
671 |
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
|
672 |
x = unpack(x.float(), height, width)
|
673 |
+
|
674 |
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
675 |
x = (x / ae.config.scaling_factor) + ae.config.shift_factor
|
676 |
x = ae.decode(x).sample
|
677 |
+
|
678 |
x = x.clamp(-1, 1)
|
679 |
x = rearrange(x[0], "c h w -> h w c")
|
680 |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
|
|
707 |
seed = gr.Number(label="Seed", precision=-1)
|
708 |
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
709 |
init_image = gr.Image(label="Initial Image", visible=False)
|
710 |
+
image2image_strength = gr.Slider(
|
711 |
+
minimum=0.0,
|
712 |
+
maximum=1.0,
|
713 |
+
step=0.01,
|
714 |
+
label="Noising Strength",
|
715 |
+
value=0.8,
|
716 |
+
visible=False
|
717 |
+
)
|
718 |
resize_img = gr.Checkbox(label="Resize Initial Image", value=True, visible=False)
|
719 |
generate_button = gr.Button("Generate", variant="primary")
|
720 |
with gr.Column():
|
|
|
729 |
|
730 |
generate_button.click(
|
731 |
fn=generate_image,
|
732 |
+
inputs=[
|
733 |
+
prompt, width, height, guidance,
|
734 |
+
inference_steps, seed, do_img2img,
|
735 |
+
init_image, image2image_strength, resize_img
|
736 |
+
],
|
737 |
outputs=[output_image, output_seed]
|
738 |
)
|
739 |
return demo
|
740 |
|
741 |
if __name__ == "__main__":
|
742 |
+
# Create the demo
|
743 |
demo = create_demo()
|
744 |
+
# Enable the queue to handle concurrency
|
745 |
+
demo.queue()
|
746 |
+
# Launch with show_api=False and share=True to avoid the "bool is not iterable" error
|
747 |
+
# and the "ValueError: When localhost is not accessible..." error.
|
748 |
+
demo.launch(show_api=False, share=True, server_name="0.0.0.0")
|