Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,804 Bytes
40462a0 7aafe2f a30ff0a 7aafe2f a30ff0a 40462a0 7aafe2f 40462a0 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f 23fd89e 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f d4545dc 7aafe2f d4545dc 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f a30ff0a 7aafe2f 97d3c4e 7aafe2f 23fd89e 7aafe2f a30ff0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline
# Hugging Face ν ν° κ°μ Έμ€κΈ°
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face token.")
# λ²μ λͺ¨λΈ λ‘λ (ν ν° μΈμ¦ μΆκ°)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", use_auth_token=hf_token)
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, use_auth_token=hf_token
).to("cuda")
torch.cuda.empty_cache()
# νκΈ λ©λ΄ μ΄λ¦ dictionary
korean_labels = {
"Generated Image": "μμ±λ μ΄λ―Έμ§",
"Prompt": "ν둬ννΈ",
"Enhance Image": "μ΄λ―Έμ§ ν₯μ",
"Advanced Options": "κ³ κΈ μ΅μ
",
"Seed": "μλ",
"Randomize Seed": "μλ 무μμν",
"Width": "λλΉ",
"Height": "λμ΄",
"Inference Steps": "μΆλ‘ λ¨κ³",
"Inspiration Gallery": "μκ° κ°€λ¬λ¦¬"
}
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text, use_auth_token=hf_token)[0]['translation_text']
return text
# Inference function
@spaces.GPU(duration=25)
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=DEFAULT_INFERENCE_STEPS):
prompt = translate_if_korean(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
# Only generate the last image in the sequence
for img in pipe.generate_images(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
):
latency = f"μ²λ¦¬ μκ°: {(time.time()-start_time):.2f} μ΄"
yield img, seed, latency
# Example prompts
examples = [
"λ¬μμ μμμ λΆννλ μμ μ°μ£Ό λΉνμ¬",
"μλ
νμΈμ μΈμμ΄λΌκ³ μ°μΈ νμ§νμ λ€κ³ μλ κ³ μμ΄",
"λΉλ μλμ²Όμ μ λλ©μ΄μ
μΌλ¬μ€νΈλ μ΄μ
",
"νλμ λλ μλμ°¨μ λ€μ¨ λΆλΉμ΄ μλ λ―Έλμ μΈ λμ νκ²½",
"κΈ΄ κ°μ μ¨μ΄λΈ 머리λ₯Ό μ¬λ € λ¬Άκ³ μκ²½μ μ΄ μ μ μ¬μ±μ μ¬μ§. κ·Έλ
λ ν° νΌλΆμ λκ³Ό μ
μ μ κ°μ‘°ν μμν νμ₯μ νμ΅λλ€. κ·Έλ
λ κ²μμ μμλ₯Ό μ
μμ΅λλ€. λ°°κ²½μ λμ 건물 μΈκ΄μΌλ‘ 보μ΄λ©°, νλΉμ΄ κ·Έλ
μ μΌκ΅΄μ λ°λ»ν λΉμ λΉμΆκ³ μμ΅λλ€.",
"μ€ν°λΈ μ‘μ€λ₯Ό μ€νμμ¦ μν μΊλ¦ν°λ‘ μμν΄λ³΄μΈμ"
]
css = """
footer {
visibility: hidden;
}
"""
# --- Gradio UI ---
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(scale=3):
result = gr.Image(label=korean_labels["Generated Image"], show_label=False, interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label=korean_labels["Prompt"],
placeholder="μμ±νκ³ μΆμ μ΄λ―Έμ§λ₯Ό μ€λͺ
νμΈμ...",
lines=3,
show_label=False,
container=False,
)
enhanceBtn = gr.Button(f"π {korean_labels['Enhance Image']}")
with gr.Column(korean_labels["Advanced Options"]):
with gr.Row():
latency = gr.Text(show_label=False)
with gr.Row():
seed = gr.Number(label=korean_labels["Seed"], value=42, precision=0)
randomize_seed = gr.Checkbox(label=korean_labels["Randomize Seed"], value=False)
with gr.Row():
width = gr.Slider(label=korean_labels["Width"], minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label=korean_labels["Height"], minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(label=korean_labels["Inference Steps"], minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
with gr.Row():
gr.Markdown(f"### π {korean_labels['Inspiration Gallery']}")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
# Event handling - Trigger image generation on button click or input change
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
queue=False
)
gr.on(
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
trigger_mode="always_last",
queue=False
)
# Launch the app
demo.launch() |