Spaces:
Paused
Paused
File size: 7,938 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 f96a94d 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 f96a94d a135ad5 f96a94d b209823 0ace4dc 23a34ba bd46f72 f96a94d 52f4e8f f96a94d a7544c9 a898014 23a34ba f96a94d 9880f3d 599ec34 f96a94d 599ec34 f96a94d 52f4e8f f96a94d 52f4e8f f96a94d dc03769 f96a94d 7d475c1 23a34ba f96a94d 599ec34 23a34ba f96a94d 23a34ba f96a94d 23a34ba f96a94d 23a34ba ee210e2 23a34ba a898014 2e78ab8 db6a3b7 a135ad5 599ec34 f96a94d 599ec34 f96a94d 599ec34 f96a94d db6a3b7 f96a94d 23a34ba 599ec34 f96a94d 599ec34 23a34ba f96a94d 23a34ba f96a94d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from transformers import pipeline
# Hugging Face ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
[์ด์ ์ฝ๋์ ๋๋จธ์ง ํจ์๋ค: pack_state, unpack_state, image_to_3d, extract_glb, activate_button, deactivate_button์ ๊ทธ๋๋ก ์ ์ง]
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
def contains_korean(text):
return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text)
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
prompt = translated
# ํ๋กฌํํธ ํ์ ๊ฐ์
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
try:
generated_image = pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
trial_id = str(uuid.uuid4())
generated_image.save(f"{TMP_DIR}/{trial_id}.png")
return generated_image
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
[์ด์ ์ฝ๋์ ๋๋จธ์ง ํธ๋ค๋ฌ๋ค์ ๊ทธ๋๋ก ์ ์ง]
if __name__ == "__main__":
# 3D ์์ฑ ํ์ดํ๋ผ์ธ
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large",
use_auth_token=HF_TOKEN
)
pipeline.cuda()
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
# Hyper-SD LoRA ๋ก๋
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch(allowed_paths=[PERSISTENT_DIR]) |