Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,347 +1,514 @@
|
|
1 |
-
import
|
2 |
-
import uuid
|
3 |
-
import gradio as gr
|
4 |
import spaces
|
5 |
-
from
|
6 |
-
|
|
|
7 |
import torch
|
8 |
-
|
9 |
-
import
|
10 |
-
from
|
11 |
-
from diffusers.utils import load_image
|
12 |
-
from diffusers.utils import export_to_video
|
13 |
-
import random
|
14 |
-
|
15 |
-
# English menu labels
|
16 |
-
english_labels = {
|
17 |
-
"Prompt": "Prompt",
|
18 |
-
"1st direction to steer": "1st Direction",
|
19 |
-
"2nd direction to steer": "2nd Direction",
|
20 |
-
"Strength": "Strength",
|
21 |
-
"Generate directions": "Generate Directions",
|
22 |
-
"Generated Images": "Generated Images",
|
23 |
-
"From 1st to 2nd direction": "From 1st to 2nd Direction",
|
24 |
-
"Strip": "Image Strip",
|
25 |
-
"Looping video": "Looping Video",
|
26 |
-
"Advanced options": "Advanced Options",
|
27 |
-
"Num of intermediate images": "Number of Intermediate Images",
|
28 |
-
"Num iterations for clip directions": "Number of CLIP Direction Iterations",
|
29 |
-
"Num inference steps": "Number of Inference Steps",
|
30 |
-
"Guidance scale": "Guidance Scale",
|
31 |
-
"Randomize seed": "Randomize Seed",
|
32 |
-
"Seed": "Seed"
|
33 |
-
}
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
def convert_to_centered_scale(num):
|
59 |
-
if num % 2 == 0: # even
|
60 |
-
start = -(num // 2 - 1)
|
61 |
-
end = num // 2
|
62 |
-
else: # odd
|
63 |
-
start = -(num // 2)
|
64 |
-
end = num // 2
|
65 |
-
return tuple(range(start, end + 1))
|
66 |
-
|
67 |
-
def is_korean(text):
|
68 |
-
"""한글 포함 여부 확인"""
|
69 |
-
return any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text)
|
70 |
-
|
71 |
-
@spaces.GPU(duration=85)
|
72 |
-
def generate(prompt,
|
73 |
-
concept_1,
|
74 |
-
concept_2,
|
75 |
-
scale,
|
76 |
-
randomize_seed=True,
|
77 |
-
seed=42,
|
78 |
-
recalc_directions=True,
|
79 |
-
iterations=200,
|
80 |
-
steps=3,
|
81 |
-
interm_steps=33,
|
82 |
-
guidance_scale=3.5,
|
83 |
-
x_concept_1="", x_concept_2="",
|
84 |
-
avg_diff_x=None,
|
85 |
-
total_images=[],
|
86 |
-
gradio_progress=gr.Progress()):
|
87 |
-
# Check if there is Korean text and warn if so
|
88 |
-
if is_korean(prompt) or is_korean(concept_1) or is_korean(concept_2):
|
89 |
-
print("Korean text detected. The model will use it directly without translation.")
|
90 |
-
|
91 |
-
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
|
92 |
-
slider_x = [concept_2, concept_1]
|
93 |
-
if randomize_seed:
|
94 |
-
seed = random.randint(0, MAX_SEED)
|
95 |
-
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
96 |
-
gradio_progress(0, desc="Calculating directions...")
|
97 |
-
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
98 |
-
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
99 |
-
else:
|
100 |
-
avg_diff = avg_diff_x
|
101 |
-
images = []
|
102 |
-
high_scale = scale
|
103 |
-
low_scale = -1 * scale
|
104 |
-
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
105 |
-
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
106 |
-
image = clip_slider.generate(
|
107 |
-
prompt,
|
108 |
-
width=768,
|
109 |
-
height=768,
|
110 |
-
guidance_scale=guidance_scale,
|
111 |
-
scale=cur_scale,
|
112 |
-
seed=seed,
|
113 |
-
num_inference_steps=steps,
|
114 |
-
avg_diff=avg_diff
|
115 |
-
)
|
116 |
-
images.append(image)
|
117 |
-
canvas = Image.new('RGB', (256 * interm_steps, 256))
|
118 |
-
for i, im in enumerate(images):
|
119 |
-
canvas.paste(im.resize((256, 256)), (256 * i, 0))
|
120 |
-
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
121 |
-
scale_total = convert_to_centered_scale(interm_steps)
|
122 |
-
scale_min = scale_total[0]
|
123 |
-
scale_max = scale_total[-1]
|
124 |
-
scale_middle = scale_total.index(0)
|
125 |
-
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
126 |
-
avg_diff_x = avg_diff.cpu()
|
127 |
-
video_path = f"{uuid.uuid4()}.mp4"
|
128 |
-
print(video_path)
|
129 |
-
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
130 |
-
|
131 |
-
def update_pre_generated_images(slider_value, total_images):
|
132 |
-
number_images = len(total_images) if total_images else 0
|
133 |
-
if number_images > 0:
|
134 |
-
scale_tuple = convert_to_centered_scale(number_images)
|
135 |
-
return total_images[scale_tuple.index(slider_value)][0]
|
136 |
-
else:
|
137 |
-
return None
|
138 |
-
|
139 |
-
def reset_recalc_directions():
|
140 |
-
return True
|
141 |
-
|
142 |
-
# Five "Time Stream" themed examples (one Korean example included)
|
143 |
-
examples = [
|
144 |
-
["신선한 토마토가 부패한 토마토로 변해가는 과정", "Fresh", "Rotten", 2.0],
|
145 |
-
["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5],
|
146 |
-
["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5],
|
147 |
-
["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0],
|
148 |
-
["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0]
|
149 |
-
]
|
150 |
-
|
151 |
-
css = """
|
152 |
-
/* Bright and modern UI with background image */
|
153 |
-
body {
|
154 |
-
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed;
|
155 |
-
background-size: cover;
|
156 |
-
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
|
157 |
-
color: #333;
|
158 |
-
}
|
159 |
-
footer {
|
160 |
-
visibility: hidden;
|
161 |
-
}
|
162 |
-
.container {
|
163 |
-
max-width: 1200px;
|
164 |
-
margin: 20px auto;
|
165 |
-
padding: 0 10px;
|
166 |
-
}
|
167 |
-
.main-panel {
|
168 |
-
background-color: rgba(255, 255, 255, 0.9);
|
169 |
-
border-radius: 12px;
|
170 |
-
padding: 20px;
|
171 |
-
margin-bottom: 20px;
|
172 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
173 |
-
}
|
174 |
-
.controls-panel {
|
175 |
-
background-color: rgba(255, 255, 255, 0.85);
|
176 |
-
border-radius: 8px;
|
177 |
-
padding: 16px;
|
178 |
-
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05);
|
179 |
-
}
|
180 |
-
.image-display {
|
181 |
-
min-height: 400px;
|
182 |
-
display: flex;
|
183 |
-
flex-direction: column;
|
184 |
-
justify-content: center;
|
185 |
-
}
|
186 |
-
.slider-container {
|
187 |
-
padding: 10px 0;
|
188 |
-
}
|
189 |
-
.advanced-panel {
|
190 |
-
margin-top: 20px;
|
191 |
-
border-top: 1px solid #eaeaea;
|
192 |
-
padding-top: 20px;
|
193 |
}
|
|
|
194 |
"""
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
)
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
gr.
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
inputs=[
|
319 |
-
prompt, concept_1, concept_2, x, randomize_seed, seed,
|
320 |
-
recalc_directions, iterations, steps, interm_steps,
|
321 |
-
guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images
|
322 |
-
],
|
323 |
-
outputs=[
|
324 |
-
x_concept_1, x_concept_2, avg_diff_x,
|
325 |
-
output_video,
|
326 |
-
image_strip,
|
327 |
-
total_images,
|
328 |
-
post_generation_image,
|
329 |
-
post_generation_slider,
|
330 |
-
seed
|
331 |
-
]
|
332 |
-
)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
post_generation_slider.change(
|
337 |
-
fn=update_pre_generated_images,
|
338 |
-
inputs=[post_generation_slider, total_images],
|
339 |
-
outputs=[post_generation_image],
|
340 |
-
queue=False,
|
341 |
-
show_progress="hidden",
|
342 |
-
concurrency_limit=None
|
343 |
-
)
|
344 |
-
|
345 |
-
# demo.launch(...)에서만 show_api=False 설정
|
346 |
-
if __name__ == "__main__":
|
347 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import argparse
|
|
|
|
|
2 |
import spaces
|
3 |
+
from visualcloze import VisualClozeModel
|
4 |
+
import gradio as gr
|
5 |
+
import examples
|
6 |
import torch
|
7 |
+
from functools import partial
|
8 |
+
from data.prefix_instruction import get_layout_instruction
|
9 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Define the missing variables here
|
12 |
+
GUIDANCE = """
|
13 |
+
## How to use this demo:
|
14 |
+
1. Select a task example from the right side, or prepare your own in-context examples and query.
|
15 |
+
2. The grid will be filled with in-context examples and a query row.
|
16 |
+
3. You can modify the task description or add content descriptions.
|
17 |
+
4. Click "Generate" to create images following the pattern shown in examples.
|
18 |
+
"""
|
19 |
+
|
20 |
+
NOTE = """
|
21 |
+
**Note:** The examples on the right side demonstrate various tasks.
|
22 |
+
Click on any example to load it into the interface. You can then modify images or prompts as needed.
|
23 |
+
"""
|
24 |
+
|
25 |
+
CITATION = """
|
26 |
+
## Paper Citation
|
27 |
+
```
|
28 |
+
@article{liu2024visualcloze,
|
29 |
+
title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning},
|
30 |
+
author={Liu, Zhaoyang and Lian, Yuheng and Wang, Jianfeng and Zhou, Aojun and Liu, Jiashi and Ye, Hang and Chen, Kai and Wang, Jingdong and Zhao, Deli},
|
31 |
+
journal={arXiv preprint arXiv:2504.07960},
|
32 |
+
year={2024}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
+
```
|
35 |
"""
|
36 |
|
37 |
+
max_grid_h = 5
|
38 |
+
max_grid_w = 5
|
39 |
+
default_grid_h = 2
|
40 |
+
default_grid_w = 3
|
41 |
+
default_upsampling_noise = 0.4
|
42 |
+
default_steps = 30
|
43 |
+
|
44 |
+
|
45 |
+
def create_demo(model):
|
46 |
+
with gr.Blocks(title="VisualCloze Demo") as demo:
|
47 |
+
gr.Markdown("# VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning")
|
48 |
+
|
49 |
+
gr.HTML("""
|
50 |
+
<div style="display:flex;column-gap:4px;">
|
51 |
+
<a href="https://github.com/lzyhha/VisualCloze">
|
52 |
+
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
53 |
+
</a>
|
54 |
+
<a href="https://visualcloze.github.io/">
|
55 |
+
<img src='https://img.shields.io/badge/Project-Website-green'>
|
56 |
+
</a>
|
57 |
+
<a href="https://arxiv.org/abs/2504.07960">
|
58 |
+
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
|
59 |
+
</a>
|
60 |
+
<a href="https://huggingface.co/VisualCloze/VisualCloze">
|
61 |
+
<img src='https://img.shields.io/badge/VisualCloze%20checkpoint-HF%20Model-green?logoColor=violet&label=%F0%9F%A4%97%20Checkpoint'>
|
62 |
+
</a>
|
63 |
+
<a href="https://huggingface.co/datasets/VisualCloze/Graph200K">
|
64 |
+
<img src='https://img.shields.io/badge/VisualCloze%20datasets-HF%20Dataset-6B88E3?logoColor=violet&label=%F0%9F%A4%97%20Graph200k%20Dataset'>
|
65 |
+
</a>
|
66 |
+
</div>
|
67 |
+
""")
|
68 |
+
|
69 |
+
gr.Markdown(GUIDANCE)
|
70 |
+
|
71 |
+
# Pre-create all possible image components
|
72 |
+
all_image_inputs = []
|
73 |
+
rows = []
|
74 |
+
row_texts = []
|
75 |
+
with gr.Row():
|
76 |
+
|
77 |
+
with gr.Column(scale=2):
|
78 |
+
# Image grid
|
79 |
+
for i in range(max_grid_h):
|
80 |
+
# Add row label before each row
|
81 |
+
row_texts.append(gr.Markdown(
|
82 |
+
"## Query" if i == default_grid_h - 1 else f"## In-context Example {i + 1}",
|
83 |
+
elem_id=f"row_text_{i}",
|
84 |
+
visible=i < default_grid_h
|
85 |
+
))
|
86 |
+
with gr.Row(visible=i < default_grid_h, elem_id=f"row_{i}") as row:
|
87 |
+
rows.append(row)
|
88 |
+
for j in range(max_grid_w):
|
89 |
+
img_input = gr.Image(
|
90 |
+
label=f"In-context Example {i + 1}/{j + 1}" if i != default_grid_h - 1 else f"Query {j + 1}",
|
91 |
+
type="pil",
|
92 |
+
visible= i < default_grid_h and j < default_grid_w,
|
93 |
+
interactive=True,
|
94 |
+
elem_id=f"img_{i}_{j}"
|
95 |
)
|
96 |
+
all_image_inputs.append(img_input)
|
97 |
+
|
98 |
+
# Prompts
|
99 |
+
layout_prompt = gr.Textbox(
|
100 |
+
label="Layout Description (Auto-filled, Read-only)",
|
101 |
+
placeholder="Layout description will be automatically filled based on grid size...",
|
102 |
+
value=get_layout_instruction(default_grid_w, default_grid_h),
|
103 |
+
elem_id="layout_prompt",
|
104 |
+
interactive=False
|
105 |
+
)
|
106 |
+
|
107 |
+
task_prompt = gr.Textbox(
|
108 |
+
label="Task Description (Can be modified by referring to examples to perform custom tasks, but may lead to unstable results)",
|
109 |
+
placeholder="Describe what task should be performed...",
|
110 |
+
value="",
|
111 |
+
elem_id="task_prompt"
|
112 |
+
)
|
113 |
+
|
114 |
+
content_prompt = gr.Textbox(
|
115 |
+
label="(Optional) Content Description (Image caption, Editing instructions, etc.)",
|
116 |
+
placeholder="Describe the content requirements...",
|
117 |
+
value="",
|
118 |
+
elem_id="content_prompt"
|
119 |
+
)
|
120 |
+
|
121 |
+
generate_btn = gr.Button("Generate", elem_id="generate_btn")
|
122 |
+
gr.Markdown(NOTE)
|
123 |
+
|
124 |
+
grid_h = gr.Slider(minimum=0, maximum=max_grid_h-1, value=default_grid_h-1, step=1, label="Number of In-context Examples", elem_id="grid_h")
|
125 |
+
grid_w = gr.Slider(minimum=1, maximum=max_grid_w, value=default_grid_w, step=1, label="Task Columns", elem_id="grid_w")
|
126 |
+
|
127 |
+
with gr.Accordion("Advanced options", open=False):
|
128 |
+
seed = gr.Number(label="Seed (0 for random)", value=0, precision=0)
|
129 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1)
|
130 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1)
|
131 |
+
upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1)
|
132 |
+
upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.05)
|
133 |
+
|
134 |
+
gr.Markdown(CITATION)
|
135 |
+
|
136 |
+
# Output
|
137 |
+
with gr.Column(scale=2):
|
138 |
+
output_gallery = gr.Gallery(
|
139 |
+
label="Generated Results",
|
140 |
+
show_label=True,
|
141 |
+
elem_id="output_gallery",
|
142 |
+
columns=None,
|
143 |
+
rows=None,
|
144 |
+
height="auto",
|
145 |
+
allow_preview=True,
|
146 |
+
object_fit="contain"
|
147 |
+
)
|
148 |
+
|
149 |
+
gr.Markdown("# Task Examples")
|
150 |
+
gr.Markdown("Each click on a task may result in different examples.")
|
151 |
+
text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False)
|
152 |
+
dense_prediction_tasks = gr.Dataset(
|
153 |
+
samples=examples.dense_prediction_text,
|
154 |
+
label='Dense Prediction',
|
155 |
+
samples_per_page=1000,
|
156 |
+
components=[text_dense_prediction_tasks])
|
157 |
+
|
158 |
+
text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False)
|
159 |
+
conditional_generation_tasks = gr.Dataset(
|
160 |
+
samples=examples.conditional_generation_text,
|
161 |
+
label='Conditional Generation',
|
162 |
+
samples_per_page=1000,
|
163 |
+
components=[text_conditional_generation_tasks])
|
164 |
+
|
165 |
+
text_image_restoration_tasks = gr.Textbox(label="Task", visible=False)
|
166 |
+
image_restoration_tasks = gr.Dataset(
|
167 |
+
samples=examples.image_restoration_text,
|
168 |
+
label='Image Restoration',
|
169 |
+
samples_per_page=1000,
|
170 |
+
components=[text_image_restoration_tasks])
|
171 |
+
|
172 |
+
text_style_transfer_tasks = gr.Textbox(label="Task", visible=False)
|
173 |
+
style_transfer_tasks = gr.Dataset(
|
174 |
+
samples=examples.style_transfer_text,
|
175 |
+
label='Style Transfer',
|
176 |
+
samples_per_page=1000,
|
177 |
+
components=[text_style_transfer_tasks])
|
178 |
+
|
179 |
+
text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False)
|
180 |
+
style_condition_fusion_tasks = gr.Dataset(
|
181 |
+
samples=examples.style_condition_fusion_text,
|
182 |
+
label='Style Condition Fusion',
|
183 |
+
samples_per_page=1000,
|
184 |
+
components=[text_style_condition_fusion_tasks])
|
185 |
+
|
186 |
+
text_tryon_tasks = gr.Textbox(label="Task", visible=False)
|
187 |
+
tryon_tasks = gr.Dataset(
|
188 |
+
samples=examples.tryon_text,
|
189 |
+
label='Virtual Try-On',
|
190 |
+
samples_per_page=1000,
|
191 |
+
components=[text_tryon_tasks])
|
192 |
+
|
193 |
+
text_relighting_tasks = gr.Textbox(label="Task", visible=False)
|
194 |
+
relighting_tasks = gr.Dataset(
|
195 |
+
samples=examples.relighting_text,
|
196 |
+
label='Relighting',
|
197 |
+
samples_per_page=1000,
|
198 |
+
components=[text_relighting_tasks])
|
199 |
+
|
200 |
+
text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
|
201 |
+
photodoodle_tasks = gr.Dataset(
|
202 |
+
samples=examples.photodoodle_text,
|
203 |
+
label='Photodoodle',
|
204 |
+
samples_per_page=1000,
|
205 |
+
components=[text_photodoodle_tasks])
|
206 |
+
|
207 |
+
text_editing_tasks = gr.Textbox(label="Task", visible=False)
|
208 |
+
editing_tasks = gr.Dataset(
|
209 |
+
samples=examples.editing_text,
|
210 |
+
label='Editing',
|
211 |
+
samples_per_page=1000,
|
212 |
+
components=[text_editing_tasks])
|
213 |
+
|
214 |
+
text_unseen_tasks = gr.Textbox(label="Task", visible=False)
|
215 |
+
unseen_tasks = gr.Dataset(
|
216 |
+
samples=examples.unseen_tasks_text,
|
217 |
+
label='Unseen Tasks (May produce unstable effects)',
|
218 |
+
samples_per_page=1000,
|
219 |
+
components=[text_unseen_tasks])
|
220 |
+
|
221 |
+
gr.Markdown("# Subject-driven Tasks Examples")
|
222 |
+
text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
|
223 |
+
subject_driven_tasks = gr.Dataset(
|
224 |
+
samples=examples.subject_driven_text,
|
225 |
+
label='Subject-driven Generation',
|
226 |
+
samples_per_page=1000,
|
227 |
+
components=[text_subject_driven_tasks])
|
228 |
+
|
229 |
+
text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
|
230 |
+
condition_subject_fusion_tasks = gr.Dataset(
|
231 |
+
samples=examples.condition_subject_fusion_text,
|
232 |
+
label='Condition+Subject Fusion',
|
233 |
+
samples_per_page=1000,
|
234 |
+
components=[text_condition_subject_fusion_tasks])
|
235 |
+
|
236 |
+
text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
237 |
+
style_transfer_with_subject_tasks = gr.Dataset(
|
238 |
+
samples=examples.style_transfer_with_subject_text,
|
239 |
+
label='Style Transfer with Subject',
|
240 |
+
samples_per_page=1000,
|
241 |
+
components=[text_style_transfer_with_subject_tasks])
|
242 |
+
|
243 |
+
text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
|
244 |
+
condition_subject_style_fusion_tasks = gr.Dataset(
|
245 |
+
samples=examples.condition_subject_style_fusion_text,
|
246 |
+
label='Condition+Subject+Style Fusion',
|
247 |
+
samples_per_page=1000,
|
248 |
+
components=[text_condition_subject_style_fusion_tasks])
|
249 |
+
|
250 |
+
text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
251 |
+
editing_with_subject_tasks = gr.Dataset(
|
252 |
+
samples=examples.editing_with_subject_text,
|
253 |
+
label='Editing with Subject',
|
254 |
+
samples_per_page=1000,
|
255 |
+
components=[text_editing_with_subject_tasks])
|
256 |
+
|
257 |
+
text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
258 |
+
image_restoration_with_subject_tasks = gr.Dataset(
|
259 |
+
samples=examples.image_restoration_with_subject_text,
|
260 |
+
label='Image Restoration with Subject',
|
261 |
+
samples_per_page=1000,
|
262 |
+
components=[text_image_restoration_with_subject_tasks])
|
263 |
+
|
264 |
+
def update_grid(h, w):
|
265 |
+
actual_h = h + 1
|
266 |
+
model.set_grid_size(actual_h, w)
|
267 |
+
|
268 |
+
updates = []
|
269 |
+
|
270 |
+
# Update image component visibility
|
271 |
+
for i in range(max_grid_h * max_grid_w):
|
272 |
+
curr_row = i // max_grid_w
|
273 |
+
curr_col = i % max_grid_w
|
274 |
+
updates.append(
|
275 |
+
gr.update(
|
276 |
+
label=f"In-context Example {curr_row + 1}/{curr_col + 1}" if curr_row != actual_h - 1 else f"Query {curr_col + 1}",
|
277 |
+
elem_id=f"img_{curr_row}_{curr_col}",
|
278 |
+
visible=(curr_row < actual_h and curr_col < w)))
|
279 |
+
|
280 |
+
# Update row visibility and labels
|
281 |
+
updates_row = []
|
282 |
+
updates_row_text = []
|
283 |
+
for i in range(max_grid_h):
|
284 |
+
updates_row.append(gr.update(f"row_{i}", visible=(i < actual_h)))
|
285 |
+
updates_row_text.append(
|
286 |
+
gr.update(
|
287 |
+
elem_id=f"row_text_{i}",
|
288 |
+
visible=i < actual_h,
|
289 |
+
value="## Query" if i == actual_h - 1 else f"## In-context Example {i + 1}",
|
290 |
)
|
291 |
+
)
|
292 |
+
|
293 |
+
updates.extend(updates_row)
|
294 |
+
updates.extend(updates_row_text)
|
295 |
+
updates.append(gr.update(elem_id="layout_prompt", value=get_layout_instruction(w, actual_h)))
|
296 |
+
return updates
|
297 |
+
|
298 |
+
def generate_image(*inputs):
|
299 |
+
images = []
|
300 |
+
if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
|
301 |
+
raise gr.Error('Please wait for the loading to complete.')
|
302 |
+
for i in range(model.grid_h):
|
303 |
+
images.append([])
|
304 |
+
for j in range(model.grid_w):
|
305 |
+
images[i].append(inputs[i * max_grid_w + j])
|
306 |
+
if i != model.grid_h - 1:
|
307 |
+
if inputs[i * max_grid_w + j] is None:
|
308 |
+
raise gr.Error('Please upload in-context examples. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again.')
|
309 |
+
seed, cfg, steps, upsampling_steps, upsampling_noise, layout_text, task_text, content_text = inputs[-8:]
|
310 |
+
|
311 |
+
try:
|
312 |
+
results = generate(
|
313 |
+
images,
|
314 |
+
[layout_text, task_text, content_text],
|
315 |
+
seed=seed, cfg=cfg, steps=steps,
|
316 |
+
upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
|
317 |
+
)
|
318 |
+
except Exception as e:
|
319 |
+
raise gr.Error('Process error. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again. Error: ' + str(e))
|
320 |
+
|
321 |
+
output = gr.update(
|
322 |
+
elem_id='output_gallery',
|
323 |
+
value=results,
|
324 |
+
columns=min(len(results), 2),
|
325 |
+
rows=int(len(results) / 2 + 0.5))
|
326 |
+
|
327 |
+
return output
|
328 |
+
|
329 |
+
def process_tasks(task, func):
|
330 |
+
outputs = func(task)
|
331 |
+
mask = outputs[0]
|
332 |
+
state = outputs[1:8]
|
333 |
+
if state[5] is None:
|
334 |
+
state[5] = default_upsampling_noise
|
335 |
+
if state[6] is None:
|
336 |
+
state[6] = default_steps
|
337 |
+
images = outputs[8:-len(mask)]
|
338 |
+
output = outputs[-len(mask):]
|
339 |
+
for i in range(len(mask)):
|
340 |
+
if mask[i] == 1:
|
341 |
+
images.append(None)
|
342 |
+
else:
|
343 |
+
images.append(output[-len(mask) + i])
|
344 |
+
|
345 |
+
state[0] = state[0] - 1
|
346 |
+
cur_hrid_h = state[0]
|
347 |
+
cur_hrid_w = state[1]
|
348 |
+
|
349 |
+
current_example = [None] * 25
|
350 |
+
for i, image in enumerate(images):
|
351 |
+
pos = (i // cur_hrid_w) * 5 + (i % cur_hrid_w)
|
352 |
+
if image is not None:
|
353 |
+
current_example[pos] = image
|
354 |
+
update_grid(cur_hrid_h, cur_hrid_w)
|
355 |
+
output = gr.update(
|
356 |
+
elem_id='output_gallery',
|
357 |
+
value=[o for o, m in zip(output, mask) if m == 1],
|
358 |
+
columns=min(sum(mask), 2),
|
359 |
+
rows=int(sum(mask) / 2 + 0.5))
|
360 |
+
return [output] + current_example + state
|
361 |
+
|
362 |
+
dense_prediction_tasks.click(
|
363 |
+
partial(process_tasks, func=examples.process_dense_prediction_tasks),
|
364 |
+
inputs=[dense_prediction_tasks],
|
365 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
366 |
+
show_progress="full",
|
367 |
+
show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
|
368 |
+
|
369 |
+
conditional_generation_tasks.click(
|
370 |
+
partial(process_tasks, func=examples.process_conditional_generation_tasks),
|
371 |
+
inputs=[conditional_generation_tasks],
|
372 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
373 |
+
show_progress="full")
|
374 |
+
|
375 |
+
image_restoration_tasks.click(
|
376 |
+
partial(process_tasks, func=examples.process_image_restoration_tasks),
|
377 |
+
inputs=[image_restoration_tasks],
|
378 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
379 |
+
show_progress="full")
|
380 |
+
|
381 |
+
style_transfer_tasks.click(
|
382 |
+
partial(process_tasks, func=examples.process_style_transfer_tasks),
|
383 |
+
inputs=[style_transfer_tasks],
|
384 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
385 |
+
show_progress="full")
|
386 |
+
|
387 |
+
style_condition_fusion_tasks.click(
|
388 |
+
partial(process_tasks, func=examples.process_style_condition_fusion_tasks),
|
389 |
+
inputs=[style_condition_fusion_tasks],
|
390 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
391 |
+
show_progress="full")
|
392 |
+
|
393 |
+
relighting_tasks.click(
|
394 |
+
partial(process_tasks, func=examples.process_relighting_tasks),
|
395 |
+
inputs=[relighting_tasks],
|
396 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
397 |
+
show_progress="full")
|
398 |
+
|
399 |
+
tryon_tasks.click(
|
400 |
+
partial(process_tasks, func=examples.process_tryon_tasks),
|
401 |
+
inputs=[tryon_tasks],
|
402 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
403 |
+
show_progress="full")
|
404 |
+
|
405 |
+
photodoodle_tasks.click(
|
406 |
+
partial(process_tasks, func=examples.process_photodoodle_tasks),
|
407 |
+
inputs=[photodoodle_tasks],
|
408 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
409 |
+
show_progress="full")
|
410 |
+
|
411 |
+
editing_tasks.click(
|
412 |
+
partial(process_tasks, func=examples.process_editing_tasks),
|
413 |
+
inputs=[editing_tasks],
|
414 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
415 |
+
show_progress="full")
|
416 |
+
|
417 |
+
unseen_tasks.click(
|
418 |
+
partial(process_tasks, func=examples.process_unseen_tasks),
|
419 |
+
inputs=[unseen_tasks],
|
420 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
421 |
+
show_progress="full")
|
422 |
+
|
423 |
+
subject_driven_tasks.click(
|
424 |
+
partial(process_tasks, func=examples.process_subject_driven_tasks),
|
425 |
+
inputs=[subject_driven_tasks],
|
426 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
427 |
+
show_progress="full")
|
428 |
+
|
429 |
+
style_transfer_with_subject_tasks.click(
|
430 |
+
partial(process_tasks, func=examples.process_style_transfer_with_subject_tasks),
|
431 |
+
inputs=[style_transfer_with_subject_tasks],
|
432 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
433 |
+
show_progress="full")
|
434 |
+
|
435 |
+
condition_subject_fusion_tasks.click(
|
436 |
+
partial(process_tasks, func=examples.process_condition_subject_fusion_tasks),
|
437 |
+
inputs=[condition_subject_fusion_tasks],
|
438 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
439 |
+
show_progress="full")
|
440 |
+
|
441 |
+
condition_subject_style_fusion_tasks.click(
|
442 |
+
partial(process_tasks, func=examples.process_condition_subject_style_fusion_tasks),
|
443 |
+
inputs=[condition_subject_style_fusion_tasks],
|
444 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
445 |
+
show_progress="full")
|
446 |
+
|
447 |
+
editing_with_subject_tasks.click(
|
448 |
+
partial(process_tasks, func=examples.process_editing_with_subject_tasks),
|
449 |
+
inputs=[editing_with_subject_tasks],
|
450 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
451 |
+
show_progress="full")
|
452 |
+
|
453 |
+
image_restoration_with_subject_tasks.click(
|
454 |
+
partial(process_tasks, func=examples.process_image_restoration_with_subject_tasks),
|
455 |
+
inputs=[image_restoration_with_subject_tasks],
|
456 |
+
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
457 |
+
show_progress="full")
|
458 |
+
# Initialize grid
|
459 |
+
model.set_grid_size(default_grid_h, default_grid_w)
|
460 |
+
|
461 |
+
# Connect event processing function to all components that need updating
|
462 |
+
output_components = all_image_inputs + rows + row_texts + [layout_prompt]
|
463 |
+
|
464 |
+
grid_h.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
|
465 |
+
grid_w.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
|
466 |
+
|
467 |
+
# Modify generate button click event
|
468 |
+
generate_btn.click(
|
469 |
+
fn=generate_image,
|
470 |
+
inputs=all_image_inputs + [seed, cfg, steps, upsampling_steps, upsampling_noise] + [layout_prompt, task_prompt, content_prompt],
|
471 |
+
outputs=output_gallery
|
472 |
+
)
|
473 |
+
|
474 |
+
return demo
|
475 |
+
|
476 |
+
|
477 |
+
@spaces.GPU()
|
478 |
+
def generate(
|
479 |
+
images,
|
480 |
+
prompts,
|
481 |
+
seed, cfg, steps,
|
482 |
+
upsampling_steps, upsampling_noise):
|
483 |
+
with torch.no_grad():
|
484 |
+
return model.process_images(
|
485 |
+
images=images,
|
486 |
+
prompts=prompts,
|
487 |
+
seed=seed,
|
488 |
+
cfg=cfg,
|
489 |
+
steps=steps,
|
490 |
+
upsampling_steps=upsampling_steps,
|
491 |
+
upsampling_noise=upsampling_noise)
|
492 |
+
|
493 |
+
|
494 |
+
def parse_args():
|
495 |
+
parser = argparse.ArgumentParser()
|
496 |
+
parser.add_argument("--model_path", type=str, default="checkpoints/visualcloze-384-lora.pth")
|
497 |
+
parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
|
498 |
+
parser.add_argument("--resolution", type=int, default=384)
|
499 |
+
return parser.parse_args()
|
500 |
+
|
501 |
+
|
502 |
+
if __name__ == "__main__":
|
503 |
+
args = parse_args()
|
504 |
|
505 |
+
snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="checkpoints")
|
506 |
+
|
507 |
+
# Initialize model
|
508 |
+
model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision)
|
509 |
|
510 |
+
# Create Gradio demo
|
511 |
+
demo = create_demo(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
+
# Start Gradio server
|
514 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|