|
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny |
|
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection |
|
from accelerate import Accelerator |
|
from huggingface_hub import hf_hub_download |
|
import spaces |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import time |
|
import PIL |
|
|
|
base = "stabilityai/stable-diffusion-xl-base-1.0" |
|
repo_id = "tianweiy/DMD2" |
|
subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000" |
|
filename = "pytorch_model.bin" |
|
|
|
|
|
class ModelWrapper: |
|
def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator): |
|
super().__init__() |
|
torch.set_grad_enabled(False) |
|
|
|
self.DTYPE = torch.float16 |
|
self.device = 0 |
|
|
|
self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False) |
|
self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False) |
|
|
|
self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE) |
|
|
|
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device) |
|
self.vae_dtype = torch.float32 |
|
|
|
self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device) |
|
self.tiny_vae_dtype = self.DTYPE |
|
|
|
self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device) |
|
|
|
self.accelerator = accelerator |
|
self.image_resolution = image_resolution |
|
self.latent_resolution = latent_resolution |
|
self.num_train_timesteps = num_train_timesteps |
|
self.vae_downsample_ratio = image_resolution // latent_resolution |
|
self.conditioning_timestep = conditioning_timestep |
|
|
|
self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler") |
|
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device) |
|
self.num_step = num_step |
|
|
|
def create_generator(self, model_id, checkpoint_path): |
|
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE) |
|
state_dict = torch.load(checkpoint_path) |
|
generator.load_state_dict(state_dict, strict=True) |
|
generator.requires_grad_(False) |
|
return generator |
|
|
|
def build_condition_input(self, height, width): |
|
original_size = (height, width) |
|
target_size = (height, width) |
|
crop_top_left = (0, 0) |
|
|
|
add_time_ids = list(original_size + crop_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE) |
|
return add_time_ids |
|
|
|
def _encode_prompt(self, prompt): |
|
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids |
|
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids |
|
|
|
prompt_dict = { |
|
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device), |
|
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device) |
|
} |
|
return prompt_dict |
|
|
|
@staticmethod |
|
def _get_time(): |
|
return time.time() |
|
|
|
|
|
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode): |
|
|
|
print("sampling...") |
|
if self.num_step == 1: |
|
all_timesteps = [self.conditioning_timestep] |
|
step_interval = 0 |
|
elif self.num_step == 4: |
|
all_timesteps = [999, 749, 499, 249] |
|
step_interval = 250 |
|
else: |
|
raise NotImplementedError() |
|
|
|
noise = noise.to(torch.float16) |
|
print(f'noise: {noise.dtype}') |
|
|
|
DTYPE = prompt_embed.dtype |
|
print(f'prompt_embed: {DTYPE}') |
|
|
|
for constant in all_timesteps: |
|
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant |
|
|
|
print(f'current_timestpes: {current_timesteps.dtype}') |
|
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions) |
|
print(eval_images.dtype) |
|
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE) |
|
print(eval_images.dtype) |
|
next_timestep = current_timesteps - step_interval |
|
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE) |
|
print(noise.dtype) |
|
if fast_vae_decode: |
|
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0] |
|
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1) |
|
return eval_images |
|
|
|
|
|
@torch.no_grad() |
|
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode): |
|
print("Running model inference...") |
|
|
|
if seed == -1: |
|
seed = np.random.randint(0, 1000000) |
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1) |
|
|
|
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator) |
|
|
|
prompt_inputs = self._encode_prompt(prompt) |
|
|
|
start_time = self._get_time() |
|
|
|
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs) |
|
|
|
batch_prompt_embeds, batch_pooled_prompt_embeds = ( |
|
prompt_embeds.repeat(num_images, 1, 1), |
|
pooled_prompt_embeds.repeat(num_images, 1, 1) |
|
) |
|
|
|
unet_added_conditions = { |
|
"time_ids": add_time_ids, |
|
"text_embeds": batch_pooled_prompt_embeds.squeeze(1) |
|
} |
|
|
|
|
|
print(f'noise: {noise.dtype}') |
|
print(f'prompt: {batch_prompt_embeds.dtype}') |
|
print(unet_added_conditions['time_ids'].dtype) |
|
print(unet_added_conditions['text_embeds'].dtype) |
|
print("________") |
|
|
|
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode) |
|
|
|
end_time = self._get_time() |
|
|
|
output_image_list = [] |
|
for image in eval_images: |
|
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy())) |
|
|
|
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds" |
|
|
|
@spaces.GPU() |
|
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep): |
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
return pred_original_sample |
|
|
|
class SDXLTextEncoder(torch.nn.Module): |
|
def __init__(self, model_id, revision, accelerator, dtype=torch.float32): |
|
super().__init__() |
|
|
|
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype) |
|
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype) |
|
|
|
self.accelerator = accelerator |
|
|
|
def forward(self, batch): |
|
text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1) |
|
text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1) |
|
prompt_embeds_list = [] |
|
|
|
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]): |
|
prompt_embeds = text_encoder(text_input_ids.to(0), output_hidden_states=True) |
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1) |
|
|
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def create_demo(): |
|
TITLE = "# DMD2-SDXL Demo" |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename) |
|
precision = "float16" |
|
image_resolution = 1024 |
|
latent_resolution = 128 |
|
num_train_timesteps = 1000 |
|
conditioning_timestep = 999 |
|
num_step = 4 |
|
revision = None |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
accelerator = Accelerator() |
|
|
|
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(TITLE) |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion(label="Advanced options", open=True): |
|
seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0) |
|
num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=1) |
|
fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True) |
|
height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=512) |
|
width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=512) |
|
with gr.Column(): |
|
result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024) |
|
error_message = gr.Text(label="Job Status") |
|
|
|
inputs = [prompt, seed, height, width, num_images, fast_vae_decode] |
|
run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_demo() |
|
demo.queue(api_open=False) |
|
demo.launch(show_error=True) |
|
|