komodel / app.py
vilarin's picture
Update app.py
50b085c verified
raw
history blame
11.1 kB
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from accelerate import Accelerator
from huggingface_hub import hf_hub_download
import spaces
import gradio as gr
import numpy as np
import torch
import time
import PIL
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo_id = "tianweiy/DMD2"
subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000"
filename = "pytorch_model.bin"
class ModelWrapper:
def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator):
super().__init__()
torch.set_grad_enabled(False)
self.DTYPE = torch.float16
self.device = 0
self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE)
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device)
self.vae_dtype = torch.float32
self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device)
self.tiny_vae_dtype = self.DTYPE
self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device)
self.accelerator = accelerator
self.image_resolution = image_resolution
self.latent_resolution = latent_resolution
self.num_train_timesteps = num_train_timesteps
self.vae_downsample_ratio = image_resolution // latent_resolution
self.conditioning_timestep = conditioning_timestep
self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler")
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
self.num_step = num_step
def create_generator(self, model_id, checkpoint_path):
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
state_dict = torch.load(checkpoint_path)
generator.load_state_dict(state_dict, strict=True)
generator.requires_grad_(False)
return generator
def build_condition_input(self, height, width):
original_size = (height, width)
target_size = (height, width)
crop_top_left = (0, 0)
add_time_ids = list(original_size + crop_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE)
return add_time_ids
def _encode_prompt(self, prompt):
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
prompt_dict = {
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
}
return prompt_dict
@staticmethod
def _get_time():
return time.time()
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
#alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
print("sampling...")
if self.num_step == 1:
all_timesteps = [self.conditioning_timestep]
step_interval = 0
elif self.num_step == 4:
all_timesteps = [999, 749, 499, 249]
step_interval = 250
else:
raise NotImplementedError()
noise = noise.to(torch.float16)
print(f'noise: {noise.dtype}')
#prompt_embed = prompt_embed.to(torch.float32)
DTYPE = prompt_embed.dtype
print(f'prompt_embed: {DTYPE}')
for constant in all_timesteps:
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
#current_timesteps = current_timesteps.to(torch.float32)
print(f'current_timestpes: {current_timesteps.dtype}')
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions)
print(eval_images.dtype)
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
print(eval_images.dtype)
next_timestep = current_timesteps - step_interval
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
print(noise.dtype)
if fast_vae_decode:
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
else:
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
return eval_images
@torch.no_grad()
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
print("Running model inference...")
if seed == -1:
seed = np.random.randint(0, 1000000)
generator = torch.manual_seed(seed)
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator)
prompt_inputs = self._encode_prompt(prompt)
start_time = self._get_time()
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
batch_prompt_embeds, batch_pooled_prompt_embeds = (
prompt_embeds.repeat(num_images, 1, 1),
pooled_prompt_embeds.repeat(num_images, 1, 1)
)
unet_added_conditions = {
"time_ids": add_time_ids,
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
}
print(f'noise: {noise.dtype}')
print(f'prompt: {batch_prompt_embeds.dtype}')
print(unet_added_conditions['time_ids'].dtype)
print(unet_added_conditions['text_embeds'].dtype)
print("________")
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
end_time = self._get_time()
output_image_list = []
for image in eval_images:
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
@spaces.GPU()
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
return pred_original_sample
class SDXLTextEncoder(torch.nn.Module):
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
super().__init__()
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype)
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype)
self.accelerator = accelerator
def forward(self, batch):
text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1)
text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1)
prompt_embeds_list = []
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]):
prompt_embeds = text_encoder(text_input_ids.to(0), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
return prompt_embeds, pooled_prompt_embeds
def create_demo():
TITLE = "# DMD2-SDXL Demo"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
precision = "float16"
image_resolution = 1024
latent_resolution = 128
num_train_timesteps = 1000
conditioning_timestep = 999
num_step = 4
revision = None
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
accelerator = Accelerator()
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
with gr.Blocks() as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column():
prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion(label="Advanced options", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0)
num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=1)
fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True)
height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=512)
width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=512)
with gr.Column():
result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024)
error_message = gr.Text(label="Job Status")
inputs = [prompt, seed, height, width, num_images, fast_vae_decode]
run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(api_open=False)
demo.launch(show_error=True)