File size: 30,710 Bytes
f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da 5325327 b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df f7728da b2e08df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback
import csv
from openai import OpenAI
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
import math
# CSS μ€μ
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 700px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
/* μ
λ ₯μ°½ λ°°κ²½μ λ° κΈμμ λ³κ²½ */
textarea, input[type="text"] {
background-color: #ffffff;
color: #000000;
}
/* νμΌ μ
λ‘λ μμ λμ΄ μ‘°μ */
#parquet-upload-area {
max-height: 150px;
overflow-y: auto;
}
/* μ΄κΈ° μ€λͺ
κΈμ¨ ν¬κΈ° μ‘°μ */
#initial-description {
font-size: 14px;
}
/* API Key μ
λ ₯ μΉμ
μ€νμΌ */
.api-key-section {
margin: 10px 0;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
}
.api-key-status {
margin-top: 5px;
font-weight: bold;
}
"""
# μΆλ‘ API ν΄λΌμ΄μΈνΈ μ€μ
hf_client = InferenceClient(
"CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def clean_response(text: str) -> str:
"""μλ΅ ν
μ€νΈ μ μ ν¨μ"""
sentences = [s.strip() for s in text.split('.') if s.strip()]
unique_sentences = []
seen = set()
for sentence in sentences:
normalized = ' '.join(sentence.lower().split())
if normalized not in seen:
seen.add(normalized)
unique_sentences.append(sentence)
cleaned_text = '. '.join(unique_sentences)
if cleaned_text and not cleaned_text.endswith('.'):
cleaned_text += '.'
return cleaned_text
def remove_duplicates(text: str) -> str:
"""μ€λ³΅ λ¬Έμ₯ μ κ±° ν¨μ"""
sentences = text.split('.')
unique_sentences = []
seen = set()
for sentence in sentences:
sentence = sentence.strip()
if sentence and sentence not in seen:
seen.add(sentence)
unique_sentences.append(sentence)
return '. '.join(unique_sentences)
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
df = pd.read_csv(file_path, sep=',')
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νμΌμ λ€μ νμ 컬λΌμ΄ λλ½λμμ΅λλ€: {', '.join(missing_columns)}", ""
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλκ³ λ³νλμμ΅λλ€.", parquet_filename
except Exception as e:
return f"CSV νμΌ μ
λ‘λ λ° λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, str]:
try:
df = pd.read_parquet(file_path, engine='pyarrow')
data_info = {
"μ΄ λ μ½λ μ": len(df),
"μ»¬λΌ λͺ©λ‘": list(df.columns),
"λ°μ΄ν° νμ
": df.dtypes.to_dict(),
"κ²°μΈ‘μΉ μ 보": df.isnull().sum().to_dict()
}
summary = []
summary.append(f"### λ°μ΄ν°μ
κΈ°λ³Έ μ 보:")
summary.append(f"- μ΄ λ μ½λ μ: {data_info['μ΄ λ μ½λ μ']}")
summary.append(f"- μ»¬λΌ λͺ©λ‘: {', '.join(data_info['μ»¬λΌ λͺ©λ‘'])}")
summary.append("\n### 컬λΌλ³ μ 보:")
for col in df.columns:
if df[col].dtype in ['int64', 'float64']:
stats = df[col].describe()
summary.append(f"\n{col} (μμΉν):")
summary.append(f"- νκ· : {stats['mean']:.2f}")
summary.append(f"- μ΅μ: {stats['min']}")
summary.append(f"- μ΅λ: {stats['max']}")
elif df[col].dtype == 'object' or df[col].dtype == 'string':
unique_count = df[col].nunique()
summary.append(f"\n{col} (ν
μ€νΈ):")
summary.append(f"- κ³ μ κ° μ: {unique_count}")
if unique_count < 10:
value_counts = df[col].value_counts().head(5)
summary.append("- μμ 5κ° κ°:")
for val, count in value_counts.items():
summary.append(f" β’ {val}: {count}κ°")
preview = df.head(10).to_markdown(index=False)
summary.append("\n### λ°μ΄ν° 미리보기:")
summary.append(preview)
parquet_content = "\n".join(summary)
parquet_json = df.to_json(orient='records', force_ascii=False)
return "Parquet νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλμμ΅λλ€.", parquet_content, parquet_json
except Exception as e:
return f"Parquet νμΌ μ
λ‘λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", ""
def text_to_parquet(text: str) -> Tuple[str, str, str]:
try:
lines = [line.strip() for line in text.split('\n') if line.strip()]
data = []
for line in lines:
try:
import re
pattern = r'(\d+),([^,]+),([^,]+),(.+)'
match = re.match(pattern, line)
if match:
id_val, text_val, label_val, metadata_val = match.groups()
text_val = text_val.strip().strip('"')
label_val = label_val.strip().strip('"')
metadata_val = metadata_val.strip().strip('"')
data.append({
'id': int(id_val),
'text': text_val,
'label': label_val,
'metadata': metadata_val
})
except Exception as e:
print(f"λΌμΈ νμ± μ€λ₯: {line}\n{str(e)}")
continue
if not data:
return "λ³νν λ°μ΄ν°κ° μμ΅λλ€.", "", ""
df = pd.DataFrame(data)
df = df.astype({
'id': 'int32',
'text': 'string',
'label': 'string',
'metadata': 'string'
})
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
preview = df.to_markdown(index=False)
return (
f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ λ³νλμμ΅λλ€. μ΄ {len(df)}κ°μ λ μ½λκ° μ²λ¦¬λμμ΅λλ€.",
preview,
parquet_filename
)
except Exception as e:
error_message = f"ν
μ€νΈ λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(f"{error_message}\n{traceback.format_exc()}")
return error_message, "", ""
def respond(message: str, history: List[Dict[str, str]], system_message: str = "", max_tokens: int = 4000, temperature: float = 0.5, top_p: float = 0.9, parquet_data: str = None, api_key: str = None) -> str:
if not api_key:
yield "β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€. μλΉμ€ μ΄μ©μ μν΄ API Keyλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."
return
# OpenAI ν΄λΌμ΄μΈνΈ μ΄κΈ°ν
client = OpenAI(api_key=api_key)
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ
λ‘λλ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ§λ¬Έμ λ΅λ³νλ μν μ νλ€.
μ£Όμ μ§μΉ¨:
1. μ§λ¬Έκ³Ό μ§μ κ΄λ ¨λ λ΄μ©λ§ κ°λ¨λͺ
λ£νκ² λ΅λ³ν κ²
2. μ΄μ λ΅λ³κ³Ό μ€λ³΅λλ λ΄μ©μ μ μΈν κ²
3. λΆνμν μμλ λΆμ° μ€λͺ
μ νμ§ λ§ κ²
4. λμΌν λ΄μ©μ λ€λ₯Έ ννμΌλ‘ λ°λ³΅νμ§ λ§ κ²
5. ν΅μ¬ μ λ³΄λ§ μ λ¬ν κ²
"""
if parquet_data:
try:
df = pd.read_json(io.StringIO(parquet_data))
data_summary = df.describe(include='all').to_string()
system_prefix += f"\n\nλ°μ΄ν° μμ½:\n{data_summary}"
except Exception as e:
print(f"λ°μ΄ν° λ‘λ μ€λ₯: {str(e)}")
messages = [{"role": "system", "content": system_prefix}]
recent_history = history[-3:] if history else []
for chat in recent_history:
messages.append({"role": chat["role"], "content": chat["content"]})
messages.append({"role": "user", "content": message})
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
yield clean_response(full_response)
except Exception as e:
error_message = f"μλ΅ μμ± μ€ μ€λ₯ λ°μ: {str(e)}"
print(f"{error_message}\n{traceback.format_exc()}")
yield error_message
def preprocess_text_with_llm(input_text: str, api_key: str = None) -> str:
if not api_key:
return "β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€. μλΉμ€ μ΄μ©μ μν΄ API Keyλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."
# OpenAI ν΄λΌμ΄μΈνΈ μ΄κΈ°ν
client = OpenAI(api_key=api_key)
system_prompt = """λ°λμ νκΈ(νκ΅μ΄)λ‘ λ΅λ³νμμ€. λΉμ μ λ°μ΄ν° μ μ²λ¦¬ μ λ¬Έκ°μ
λλ€. μ
λ ₯λ ν
μ€νΈλ₯Ό CSV λ°μ΄ν°μ
νμμΌλ‘ λ³ννμΈμ.
κ·μΉ:
1. μΆλ ₯ νμ: id,text,label,metadata
2. id: 1λΆν° μμνλ μμ°¨μ λ²νΈ
3. text: μλ―Έ μλ λ¨μλ‘ λΆλ¦¬λ ν
μ€νΈ
4. label: ν
μ€νΈμ μ£Όμ λ μΉ΄ν
κ³ λ¦¬λ₯Ό μλ κΈ°μ€μΌλ‘ μ ννκ² ν κ°λ§ μ ν
- Historical_Figure (μμ¬μ μΈλ¬Ό)
- Military_History (κ΅°μ¬ μμ¬)
- Technology (κΈ°μ )
- Politics (μ μΉ)
- Culture (λ¬Έν)
5. metadata: λ μ§, μΆμ² λ± μΆκ° μ 보"""
try:
response = client.chat.completions.create(
model="gpt-4-0125-preview",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": input_text}
],
max_tokens=4000,
temperature=0.1,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
processed_text = clean_response(full_response)
try:
from io import StringIO
import csv
csv.reader(StringIO(processed_text))
return processed_text
except csv.Error:
return "LLMμ΄ μ¬λ°λ₯Έ CSV νμμ μμ±νμ§ λͺ»νμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ."
except Exception as e:
error_message = f"μ μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(error_message)
return error_message
# Gradio Blocks μΈν°νμ΄μ€ μ€μ
with gr.Blocks(css=css) as demo:
api_key_state = gr.State("") # API ν€λ₯Ό μ μ₯ν State μΆκ°
gr.Markdown("# MyEzRAG: LLMμ΄ λλ§μ λ°μ΄ν°λ‘ νμ΅ν μ½ν
μΈ μμ±/λ΅λ³", elem_id="initial-description")
# API ν€ μ
λ ₯ μΉμ
μΆκ°
with gr.Row(elem_classes="api-key-section"):
with gr.Column(scale=3):
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
show_label=True
)
with gr.Column(scale=1):
api_key_button = gr.Button("API Key μ€μ ", variant="primary")
# API ν€ μν νμ
api_key_status = gr.Markdown("β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€. μλΉμ€ μ΄μ©μ μν΄ API Keyλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ.", elem_classes="api-key-status")
# API ν€ μ€μ ν¨μ
def set_api_key(api_key: str):
if not api_key.strip():
return "β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€. μλΉμ€ μ΄μ©μ μν΄ API Keyλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ.", ""
if not api_key.startswith("sk-"):
return "β μ¬λ°λ₯΄μ§ μμ API Key νμμ
λλ€. λ€μ νμΈν΄μ£ΌμΈμ.", ""
return "β
API Keyκ° μ±κ³΅μ μΌλ‘ μ€μ λμμ΅λλ€.", api_key
# API ν€ μ€μ μ΄λ²€νΈ μ°κ²°
api_key_button.click(
set_api_key,
inputs=[api_key_input],
outputs=[api_key_status, api_key_state]
)
gr.Markdown(
"### 'μ¬μ© λ°©λ²' νμ ν΅ν΄ μμΈν μ΄μ© λ°©λ²μ μ°Έκ³ νμΈμ.\n"
"### Tip) 'μμ 'λ₯Ό ν΅ν΄ λ€μν νμ© λ°©λ²μ 체ννκ³ μμ©ν΄ 보μΈμ, λ°μ΄ν°μ
μ
λ‘λμ 미리보기λ 10κ±΄λ§ μΆλ ₯",
elem_id="initial-description"
)
# 첫 λ²μ§Έ ν: My λ°μ΄ν°μ
+LLM
with gr.Tab("My λ°μ΄ν°μ
+LLM"):
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot_data_upload = gr.Chatbot(label="μ±λ΄", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send_data_upload = gr.Button("μ μ‘")
with gr.Accordion("μμ€ν
ν둬ννΈ λ° μ΅μ
μ€μ ", open=False):
system_message = gr.Textbox(label="System Message", value="λλ AI μ‘°μΈμ μν μ΄λ€.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
parquet_data_state = gr.State()
def handle_message_data_upload(message: str, history: List[Dict[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, parquet_data: str, api_key: str):
if not api_key:
history = history or []
history.append({"role": "assistant", "content": "β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€. μλΉμ€ μ΄μ©μ μν΄ API Keyλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."})
yield history, ""
return
history = history or []
recent_questions = [chat['content'].strip().lower() for chat in history[-3:] if chat['role'] == 'user']
if message.strip().lower() in recent_questions:
yield history + [{"role": "assistant", "content": "λμΌν μ§λ¬Έμ΄ μ΅κ·Όμ μμμ΅λλ€. λ€λ₯Έ μ§λ¬Έμ ν΄μ£ΌμΈμ."}], ""
return
try:
history.append({"role": "user", "content": message})
response_gen = respond(
message,
history,
system_message,
max_tokens,
temperature=0.3,
top_p=top_p,
parquet_data=parquet_data,
api_key=api_key
)
partial_response = ""
for partial in response_gen:
partial_response = partial
display_history = history + [{"role": "assistant", "content": partial_response}]
yield display_history, ""
history.append({"role": "assistant", "content": partial_response})
except Exception as e:
response = f"μ€λ₯ λ°μ: {str(e)}"
history.append({"role": "assistant", "content": response})
yield history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[
msg_data_upload,
chatbot_data_upload,
system_message,
max_tokens,
temperature,
top_p,
parquet_data_state,
api_key_state,
],
outputs=[chatbot_data_upload, msg_data_upload],
queue=True
)
# μμ μΆκ°
with gr.Accordion("μμ ", open=False):
gr.Examples(
examples=[
["μ
λ‘λλ λ°μ΄ν°μ
μ λν΄ μμ½ μ€λͺ
νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈ(κ°μ, λ°°κ²½ λ° νμμ±, κΈ°μ‘΄ μ μ¬ μ ν/μλΉμ€μ λΉκ΅νμ¬ νΉμ₯μ , νμ©μ², κ°μΉ, κΈ°λν¨κ³Ό, κ²°λ‘ μ ν¬ν¨)λ‘ 4000 ν ν° μ΄μ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ ν μμΈ νμ΄μ§ νμμ λ΄μ©μ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€ λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² νμ μ μΈ μ°½μ λ°λͺ
λ΄μ©μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μμ±νλΌ."],
],
inputs=msg_data_upload,
label="μμ μ ν",
)
# Parquet νμΌ μ
λ‘λ
gr.Markdown("### Parquet νμΌ μ
λ‘λ")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(
label="Parquet νμΌ μ
λ‘λ", type="filepath", elem_id="parquet-upload-area"
)
parquet_upload_button = gr.Button("μ
λ‘λ")
parquet_upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
def handle_parquet_upload(file_path: str):
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", ""
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
# λ λ²μ§Έ ν: CSV to My λ°μ΄ν°μ
with gr.Tab("CSV to My λ°μ΄ν°μ
"):
gr.Markdown("### CSV νμΌ μ
λ‘λ λ° Parquet λ³ν")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV νμΌ μ
λ‘λ", type="filepath")
upload_button = gr.Button("μ
λ‘λ λ° λ³ν")
upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_button = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_csv_upload(file_path: str):
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
parquet_content = load_parquet(parquet_filename)
return message, parquet_content, parquet_filename
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
# μΈ λ²μ§Έ ν: Text to My λ°μ΄ν°μ
with gr.Tab("Text to My λ°μ΄ν°μ
"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ CSVλ‘ λ³ν ν ParquetμΌλ‘ μλ μ νλ©λλ€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯ (κ° νμ `id,text,label,metadata` νμμΌλ‘ μ
λ ₯)",
lines=10,
placeholder='μ: 1,"μ΄μμ ","μ₯κ΅°","κ±°λΆμ "\n2,"μκ· ","μ₯κ΅°","λͺ¨ν¨"\n3,"μ μ‘°","μ","μκΈ°"\n4,"λμν λ―Έ νλ°μμ","μ","μΉ¨λ΅"'
)
convert_button = gr.Button("λ³ν λ° λ€μ΄λ‘λ")
convert_status = gr.Textbox(label="λ³ν μν", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_parquet_convert = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_text_to_parquet(text: str):
message, parquet_content, parquet_filename = text_to_parquet(text)
if parquet_filename:
return message, parquet_content, parquet_filename
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# λ€ λ²μ§Έ ν: Text Preprocessing with LLM
with gr.Tab("Text Preprocessing with LLM"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ LLMμ΄ λ°μ΄ν°μ
νμμ λ§κ² μ μ²λ¦¬νμ¬ μΆλ ₯ν©λλ€.")
with gr.Row():
with gr.Column():
raw_text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯",
lines=15,
placeholder="μ¬κΈ°μ μ μ²λ¦¬ν ν
μ€νΈλ₯Ό μ
λ ₯νμΈμ..."
)
with gr.Row():
preprocess_button = gr.Button("μ μ²λ¦¬ μ€ν", variant="primary")
clear_button = gr.Button("μ΄κΈ°ν")
preprocess_status = gr.Textbox(
label="μ μ²λ¦¬ μν",
interactive=False,
value="λκΈ° μ€..."
)
processed_text_output = gr.Textbox(
label="μ μ²λ¦¬λ λ°μ΄ν°μ
μΆλ ₯",
lines=15,
interactive=False
)
convert_to_parquet_button = gr.Button("ParquetμΌλ‘ λ³ν")
download_parquet = gr.File(label="λ³νλ Parquet νμΌ λ€μ΄λ‘λ")
def handle_text_preprocessing(input_text: str, api_key: str):
if not api_key:
yield "β οΈ API Keyκ° μ€μ λμ§ μμμ΅λλ€.", ""
return
if not input_text.strip():
yield "μ
λ ₯ ν
μ€νΈκ° μμ΅λλ€.", ""
return
try:
yield "μ μ²λ¦¬λ₯Ό μμν©λλ€...", ""
processed_text = preprocess_text_with_llm(input_text, api_key)
if processed_text:
yield "μ μ²λ¦¬κ° μλ£λμμ΅λλ€.", processed_text
else:
yield "μ μ²λ¦¬ κ²°κ³Όκ° μμ΅λλ€.", ""
except Exception as e:
yield f"μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def clear_inputs():
return "", "λκΈ° μ€...", ""
def convert_to_parquet_file(processed_text: str):
if not processed_text.strip():
return "λ³νν ν
μ€νΈκ° μμ΅λλ€.", None
try:
message, parquet_content, parquet_filename = text_to_parquet(processed_text)
if parquet_filename:
return message, parquet_filename
return message, None
except Exception as e:
return f"Parquet λ³ν μ€ μ€λ₯ λ°μ: {str(e)}", None
preprocess_button.click(
handle_text_preprocessing,
inputs=[raw_text_input, api_key_state],
outputs=[preprocess_status, processed_text_output],
queue=True
)
clear_button.click(
clear_inputs,
outputs=[raw_text_input, preprocess_status, processed_text_output]
)
convert_to_parquet_button.click(
convert_to_parquet_file,
inputs=[processed_text_output],
outputs=[preprocess_status, download_parquet]
)
with gr.Accordion("μμ ν
μ€νΈ", open=False):
gr.Examples(
examples=[
["μ΄μμ μ μ‘°μ μ€κΈ°μ 무μ μ΄λ€. κ·Έλ μμ§μλ λΉμ ν΄κ΅°μ μ΄λμλ€. κ±°λΆμ μ λ§λ€μ΄ μκ΅°κ³Ό μΈμ λ€."],
["μΈκ³΅μ§λ₯μ μ»΄ν¨ν° κ³Όνμ ν λΆμΌμ΄λ€. κΈ°κ³νμ΅μ μΈκ³΅μ§λ₯μ νμ λΆμΌμ΄λ€. λ₯λ¬λμ κΈ°κ³νμ΅μ ν λ°©λ²μ΄λ€."]
],
inputs=raw_text_input,
label="μμ μ ν"
)
# μ¬μ© λ°©λ² ν
with gr.Tab("π μ¬μ© λ°©λ²"):
gr.Markdown("""
# MyEzRAG μ¬μ© κ°μ΄λ
## π API Key μ€μ
1. OpenAI API Keyλ₯Ό μλ¨ μ
λ ₯μ°½μ μ
λ ₯
2. 'API Key μ€μ ' λ²νΌ ν΄λ¦
3. μ€μ μ±κ³΅ λ©μμ§ νμΈ
## 1οΈβ£ My λ°μ΄ν°μ
+LLM ν
### κΈ°λ₯
- μ
λ‘λλ Parquet λ°μ΄ν°μ
μ κΈ°λ°μΌλ‘ LLMκ³Ό λν
- λ°μ΄ν°μ
μ λ΄μ©μ νμ©ν μ½ν
μΈ μμ±
### μ¬μ© λ°©λ²
1. Parquet νμΌ μ
λ‘λ μΉμ
μμ λ°μ΄ν°μ
νμΌμ μ
λ‘λ
2. μ±ν
μ°½μ μνλ μ§λ¬Έμ΄λ μμ²μ¬ν μ
λ ₯
3. μμ λ²νΌμ νμ©νμ¬ λ€μν νμ© μ¬λ‘ 체ν
### ν
- μμ€ν
ν둬ννΈ μ€μ μΌλ‘ μλ΅ μ€νμΌ μ‘°μ κ°λ₯
- μμΈν μ§λ¬ΈμΌμλ‘ λ μ νν λ΅λ³ μ 곡
---
## 2οΈβ£ CSV to My λ°μ΄ν°μ
ν
### κΈ°λ₯
- CSV νμΌμ Parquet νμμΌλ‘ λ³ν
- λ°μ΄ν° μ΅μ ν λ° μ μ
### μ¬μ© λ°©λ²
1. CSV νμΌ μ€λΉ (νμ 컬λΌ: id, text, label, metadata)
2. νμΌ μ
λ‘λ ν 'μ
λ‘λ λ° λ³ν' λ²νΌ ν΄λ¦
3. λ³νλ Parquet νμΌ λ€μ΄λ‘λ
### μ£Όμμ¬ν
- CSV νμΌμ λ°λμ νμ 컬λΌμ ν¬ν¨ν΄μΌ ν¨
- μΈμ½λ©μ UTF-8 κΆμ₯
---
## 3οΈβ£ Text to My λ°μ΄ν°μ
ν
### κΈ°λ₯
- ν
μ€νΈ νμμ λ°μ΄ν°λ₯Ό ParquetμΌλ‘ λ³ν
- μλ λ°μ΄ν° μ
λ ₯ μ§μ
### μ¬μ© λ°©λ²
1. μ§μ λ νμμΌλ‘ ν
μ€νΈ μ
λ ₯
```
1,"μ΄μμ ","μ₯κ΅°","κ±°λΆμ "
2,"μκ· ","μ₯κ΅°","λͺ¨ν¨"
```
2. 'λ³ν λ° λ€μ΄λ‘λ' λ²νΌ ν΄λ¦
3. λ³νλ νμΌ νμΈ λ° λ€μ΄λ‘λ
### μ
λ ₯ νμ
- id: μμ°¨μ λ²νΈ
- text: μ€μ ν
μ€νΈ λ΄μ©
- label: λΆλ₯ λΌλ²¨
- metadata: λΆκ° μ 보
---
## 4οΈβ£ Text Preprocessing with LLM ν
### κΈ°λ₯
- LLMμ νμ©ν μλ ν
μ€νΈ μ μ²λ¦¬
- ꡬ쑰νλ λ°μ΄ν°μ
μμ±
### μ¬μ© λ°©λ²
1. μλ¬Έ ν
μ€νΈ μ
λ ₯
2. 'μ μ²λ¦¬ μ€ν' λ²νΌ ν΄λ¦
3. κ²°κ³Ό νμΈ ν νμμ Parquet λ³ν
### νΉμ§
- μλ λ μ΄λΈλ§
- λ¬Έμ₯ λ¨μ λΆλ¦¬
- μ€λ³΅ μ κ±°
- λ°μ΄ν° μ κ·ν
## π‘ μΌλ°μ μΈ ν
- API Keyλ μμ νκ² λ³΄κ΄νκ³ μ£ΌκΈ°μ μΌλ‘ κ°±μ
- κ° νμ μμ λ₯Ό μ°Έκ³ νμ¬ μ¬μ©λ² μ΅νκΈ°
- λ°μ΄ν° νμ§μ΄ μ’μμλ‘ λ λμ κ²°κ³Ό μ 곡
- μ€λ₯ λ°μ μ μ
λ ₯ λ°μ΄ν° νμ νμΈ
- λμ©λ μ²λ¦¬ μ μ μ ν μ²ν¬ ν¬κΈ°λ‘ λΆν μ²λ¦¬
## β οΈ μ£Όμμ¬ν
- API Keyλ₯Ό νμΈκ³Ό 곡μ νμ§ μκΈ°
- λ―Όκ°ν κ°μΈμ 보 ν¬ν¨νμ§ μκΈ°
- λ°μ΄ν° λ°±μ
κΆμ₯
- λ€νΈμν¬ μν νμΈ
- λΈλΌμ°μ μΊμ μ£ΌκΈ°μ μ 리
## π λ¬Έμ ν΄κ²°
- API Key μ€λ₯: ν€ νμ λ° μ ν¨μ± νμΈ
- μ€λ₯ λ°μ μ μ
λ ₯ λ°μ΄ν° νμ νμΈ
- νμΌ μ
λ‘λ μ€ν¨ μ νμΌ ν¬κΈ° λ° νμ νμΈ
- λ³ν μ€ν¨ μ λ°μ΄ν° μΈμ½λ© νμΈ
- μλ΅μ΄ λ릴 κ²½μ° λ°μ΄ν° ν¬κΈ° μ‘°μ
""")
gr.Markdown("### [email protected]", elem_id="initial-description")
if __name__ == "__main__":
demo.launch(share=True)
|