File size: 27,323 Bytes
b3be69b aca9376 b3be69b 6998afd aca9376 6998afd aca9376 6998afd aca9376 6998afd aca9376 6998afd aca9376 6998afd b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b ffb5b8d b3be69b 56d3d16 2ff5289 56d3d16 2ff5289 b3be69b 56d3d16 b3be69b 2ff5289 b3be69b 56d3d16 b3be69b 4f03165 b3be69b 4f03165 aca9376 4f03165 aca9376 b3be69b 4f03165 56d3d16 4f03165 56d3d16 4f03165 56d3d16 4f03165 b3be69b 12e6818 b3be69b 56d3d16 b3be69b 56d3d16 b3be69b 56d3d16 b3be69b aca9376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback
import csv
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
import math
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer
# μΆλ‘ API ν΄λΌμ΄μΈνΈ μ€μ
hf_client = InferenceClient(
"CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)
def chunk_text(text: str, chunk_size: int = 500) -> List[str]:
"""ν
μ€νΈλ₯Ό λ μμ μ²ν¬λ‘ λΆν """
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-plus-08-2024")
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence = sentence.strip()
tokenized_sentence = tokenizer.encode(sentence, add_special_tokens=False)
sentence_length = len(tokenized_sentence)
if current_length + sentence_length > chunk_size:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = sentence_length
else:
current_chunk.append(sentence)
current_length += sentence_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
@lru_cache(maxsize=100)
def cached_preprocess(text: str) -> str:
"""μμ£Ό μ¬μ©λλ ν
μ€νΈμ λν μ μ²λ¦¬ κ²°κ³Όλ₯Ό μΊμ±"""
return preprocess_single_chunk(text)
def preprocess_single_chunk(chunk: str) -> str:
"""λ¨μΌ μ²ν¬μ λν μ μ²λ¦¬ μν"""
system_prompt = """λΉμ μ λ°μ΄ν° μ μ²λ¦¬ μ λ¬Έκ°μ
λλ€. μ
λ ₯λ ν
μ€νΈλ₯Ό CSV λ°μ΄ν°μ
νμμΌλ‘ λΉ λ₯΄κ² λ³ννμΈμ.
[κΈ°μ‘΄ κ·μΉ λμΌ]"""
full_prompt = f"{system_prompt}\n\nμ
λ ₯ν
μ€νΈ:\n{chunk}\n\nμΆλ ₯:"
try:
# μ€νΈλ¦¬λ° λΉνμ±ν λ° νλΌλ―Έν° μ΅μ ν
response = hf_client.text_generation(
prompt=full_prompt,
max_new_tokens=2000, # ν ν° μ μ ν
temperature=0.1, # λ κ²°μ μ μΈ μΆλ ₯
top_p=0.5, # λ μ§μ€λ μΆλ ₯
stream=False # μ€νΈλ¦¬λ° λΉνμ±ν
)
return response.strip()
except Exception as e:
return f"μ²ν¬ μ²λ¦¬ μ€ μ€λ₯ λ°μ: {str(e)}"
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def respond(
message: str,
history: List[Dict[str, str]],
system_message: str = "",
max_tokens: int = 4000,
temperature: float = 0.5,
top_p: float = 0.9,
parquet_data: str = None
) -> str:
# μμ€ν
ν둬ννΈ μ€μ
if parquet_data:
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ
λ‘λλ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ§λ¬Έμ λ΅λ³νλ μν μ νλ€. λ°μ΄ν°λ₯Ό λΆμνμ¬ μ¬μ©μμκ² λμμ΄ λλ μ 보λ₯Ό μ 곡νλΌ. λ°μ΄ν°λ₯Ό νμ©νμ¬ μμΈνκ³ μ νν λ΅λ³μ μ 곡νλ, λ―Όκ°ν μ 보λ κ°μΈ μ 보λ₯Ό λ
ΈμΆνμ§ λ§λΌ."""
try:
df = pd.read_json(io.StringIO(parquet_data))
# λ°μ΄ν°μ μμ½ μ 보 μμ±
data_summary = df.describe(include='all').to_string()
system_prefix += f"\n\nμ
λ‘λλ λ°μ΄ν°μ μμ½ μ 보:\n{data_summary}"
except Exception as e:
print(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {str(e)}\n{traceback.format_exc()}")
system_prefix += "\n\nλ°μ΄ν°λ₯Ό λ‘λνλ μ€ μ€λ₯κ° λ°μνμ΅λλ€."
else:
system_prefix = system_message or "λλ AI μ‘°μΈμ μν μ΄λ€."
# λ©μμ§ μμ±
prompt = system_prefix + "\n\n"
for chat in history:
if chat['role'] == 'user':
prompt += f"μ¬μ©μ: {chat['content']}\n"
else:
prompt += f"AI: {chat['content']}\n"
prompt += f"μ¬μ©μ: {message}\nAI:"
try:
# λͺ¨λΈμ λ©μμ§ μ μ‘ λ° μλ΅ λ°κΈ°
response = ""
stream = hf_client.text_generation(
prompt=prompt,
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for msg in stream:
if msg:
response += msg
yield response
except Exception as e:
error_message = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
yield error_message
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
# CSV νμΌ μ½κΈ°
df = pd.read_csv(file_path, sep=',')
# νμ μ»¬λΌ νμΈ
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νμΌμ λ€μ νμ 컬λΌμ΄ λλ½λμμ΅λλ€: {', '.join(missing_columns)}", ""
# λ°μ΄ν° ν΄λ μ§
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλκ³ λ³νλμμ΅λλ€.", parquet_filename
except Exception as e:
return f"CSV νμΌ μ
λ‘λ λ° λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, str]:
try:
# Parquet νμΌ μ½κΈ°
df = pd.read_parquet(file_path, engine='pyarrow')
# MarkdownμΌλ‘ λ³ννμ¬ λ―Έλ¦¬λ³΄κΈ°
parquet_content = df.head(10).to_markdown(index=False)
# DataFrameμ JSON λ¬Έμμ΄λ‘ λ³ν
parquet_json = df.to_json(orient='records', force_ascii=False)
return "Parquet νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλμμ΅λλ€.", parquet_content, parquet_json
except Exception as e:
return f"Parquet νμΌ μ
λ‘λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", ""
def text_to_parquet(text: str) -> Tuple[str, str, str]:
try:
from io import StringIO
import csv
# μ
λ ₯ ν
μ€νΈ μ μ
lines = text.strip().split('\n')
cleaned_lines = []
for line in lines:
# λΉ μ€ κ±΄λλ°κΈ°
if not line.strip():
continue
# μλ°μ΄ν μ κ·ν
line = line.replace('""', '"') # μ€λ³΅ μλ°μ΄ν μ²λ¦¬
# CSV νμ±μ μν μμ StringIO κ°μ²΄ μμ±
temp_buffer = StringIO(line)
try:
# CSV λΌμΈ νμ± μλ
reader = csv.reader(temp_buffer, quoting=csv.QUOTE_ALL)
parsed_line = next(reader)
if len(parsed_line) == 4: # id, text, label, metadata
# κ° νλλ₯Ό μ μ ν ν¬λ§·ν
formatted_line = f'{parsed_line[0]},"{parsed_line[1]}","{parsed_line[2]}","{parsed_line[3]}"'
cleaned_lines.append(formatted_line)
except:
continue
finally:
temp_buffer.close()
# μ μ λ CSV λ°μ΄ν° μμ±
cleaned_csv = '\n'.join(cleaned_lines)
# DataFrame μμ±
df = pd.read_csv(
StringIO(cleaned_csv),
sep=',',
quoting=csv.QUOTE_ALL,
escapechar='\\',
names=['id', 'text', 'label', 'metadata']
)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'string', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet νμΌ λ΄μ© 미리보기
parquet_content = load_parquet(parquet_filename)
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ λ³νλμμ΅λλ€.", parquet_content, parquet_filename
except Exception as e:
error_message = f"ν
μ€νΈ λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(f"{error_message}\n{traceback.format_exc()}")
return error_message, "", ""
def preprocess_text_with_llm(input_text: str) -> str:
if not input_text.strip():
return "μ
λ ₯ ν
μ€νΈκ° λΉμ΄μμ΅λλ€."
system_prompt = """λΉμ μ λ°μ΄ν° μ μ²λ¦¬ μ λ¬Έκ°μ
λλ€. μ
λ ₯λ ν
μ€νΈλ₯Ό CSV λ°μ΄ν°μ
νμμΌλ‘ λ³ννμΈμ.
κ·μΉ:
1. μΆλ ₯ νμ: id,text,label,metadata
2. id: 1λΆν° μμνλ μμ°¨μ λ²νΈ
3. text: μλ―Έ μλ λ¨μλ‘ λΆλ¦¬λ ν
μ€νΈ
4. label: ν
μ€νΈμ μ£Όμ λ μΉ΄ν
κ³ λ¦¬λ₯Ό μλ κΈ°μ€μΌλ‘ μ ννκ² ν κ°λ§ μ ν
- Historical_Figure (μμ¬μ μΈλ¬Ό)
- Military_History (κ΅°μ¬ μμ¬)
- Technology (κΈ°μ )
- Politics (μ μΉ)
- Culture (λ¬Έν)
5. metadata: λ μ§, μΆμ² λ± μΆκ° μ 보
μ€μ:
- λμΌν ν
μ€νΈλ₯Ό λ°λ³΅ν΄μ μΆλ ₯νμ§ λ§ κ²
- κ° ν
μ€νΈλ ν λ²λ§ μ²λ¦¬νμ¬ κ°μ₯ μ ν©ν labelμ μ νν κ²
- μ
λ ₯ ν
μ€νΈλ₯Ό μλ―Έ λ¨μλ‘ μ μ ν λΆλ¦¬ν κ²
μμ:
1,"μ΄μμ μ μ‘°μ μ€κΈ°μ 무μ μ΄λ€.","Historical_Figure","μ‘°μ μλ, μν€λ°±κ³Ό"
μ£Όμμ¬ν:
- textμ μΌνκ° μμΌλ©΄ ν°λ°μ΄νλ‘ κ°μΈκΈ°
- ν°λ°μ΄νλ λ°±μ¬λμλ‘ μ΄μ€μΌμ΄ν μ²λ¦¬
- κ° νμ μλ‘μ΄ μ€λ‘ ꡬλΆ
- λΆνμν λ°λ³΅ μΆλ ₯ κΈμ§"""
try:
# ν
μ€νΈλ₯Ό μ²ν¬λ‘ λΆν
chunks = chunk_text(input_text)
# λ³λ ¬ μ²λ¦¬λ‘ μ²ν¬λ€μ μ²λ¦¬
with ThreadPoolExecutor(max_workers=3) as executor:
futures = []
for chunk in chunks:
# κ° μ²ν¬μ λν ν둬ννΈ μμ±
chunk_prompt = f"{system_prompt}\n\nμ
λ ₯ν
μ€νΈ:\n{chunk}\n\nμΆλ ₯:"
future = executor.submit(
hf_client.text_generation,
prompt=chunk_prompt,
max_new_tokens=2000,
temperature=0.1,
top_p=0.5,
stream=False
)
futures.append(future)
processed_chunks = [future.result() for future in futures]
# κ²°κ³Ό λ³ν© λ° μ€λ³΅ μ κ±°
all_lines = []
seen_texts = set()
current_id = 1
for chunk_result in processed_chunks:
# EOS_TOKEN μ²λ¦¬
if "<EOS_TOKEN>" in chunk_result:
chunk_result = chunk_result.split("<EOS_TOKEN>")[0]
lines = chunk_result.strip().split('\n')
for line in lines:
line = line.strip()
if line and 'μΆλ ₯:' not in line and line not in seen_texts:
# ID μ¬ν λΉ
parts = line.split(',', 1)
if len(parts) > 1:
new_line = f"{current_id},{parts[1]}"
if new_line not in seen_texts: # μΆκ°μ μΈ μ€λ³΅ κ²μ¬
all_lines.append(new_line)
seen_texts.add(new_line)
current_id += 1
processed_text = '\n'.join(all_lines)
# CSV νμ κ²μ¦
try:
from io import StringIO
import csv
csv.reader(StringIO(processed_text))
return processed_text
except csv.Error:
return "LLMμ΄ μ¬λ°λ₯Έ CSV νμμ μμ±νμ§ λͺ»νμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ."
except Exception as e:
error_message = f"μ μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(error_message)
return error_message
# CSS μ€μ
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 700px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
/* μ
λ ₯μ°½ λ°°κ²½μ λ° κΈμμ λ³κ²½ */
textarea, input[type="text"] {
background-color: #ffffff; /* ν°μ λ°°κ²½ */
color: #000000; /* κ²μ μ κΈμ */
}
/* νμΌ μ
λ‘λ μμ λμ΄ μ‘°μ */
#parquet-upload-area {
max-height: 150px;
overflow-y: auto;
}
/* μ΄κΈ° μ€λͺ
κΈμ¨ ν¬κΈ° μ‘°μ */
#initial-description {
font-size: 14px;
}
"""
# Gradio Blocks μΈν°νμ΄μ€ μ€μ
with gr.Blocks(css=css) as demo:
gr.Markdown("# My RAG: LLMμ΄ λλ§μ λ°μ΄ν°λ‘ νμ΅ν μ½ν
μΈ μμ±/λ΅λ³", elem_id="initial-description")
gr.Markdown(
"### 1) λλ§μ λ°μ΄ν°λ₯Ό μ
λ ₯ λλ CSV μ
λ‘λλ‘ Parquet λ°μ΄ν°μ
μλ λ³ν 2) Parquet λ°μ΄ν°μ
μ μ
λ‘λνλ©΄, LLMμ΄ λ§μΆ€ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬ μλ΅\n"
"### Tip) 'μμ 'λ₯Ό ν΅ν΄ λ€μν νμ© λ°©λ²μ 체ννκ³ μμ©ν΄ 보μΈμ, λ°μ΄ν°μ
μ
λ‘λμ 미리보기λ 10κ±΄λ§ μΆλ ₯",
elem_id="initial-description"
)
# 첫 λ²μ§Έ ν: μ±λ΄ λ°μ΄ν° μ
λ‘λ (ν μ΄λ¦ λ³κ²½: "My λ°μ΄ν°μ
+LLM")
with gr.Tab("My λ°μ΄ν°μ
+LLM"):
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot_data_upload = gr.Chatbot(label="μ±λ΄", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send_data_upload = gr.Button("μ μ‘")
with gr.Accordion("μμ€ν
ν둬ννΈ λ° μ΅μ
μ€μ ", open=False):
system_message = gr.Textbox(label="System Message", value="λλ AI μ‘°μΈμ μν μ΄λ€.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
parquet_data_state = gr.State()
def handle_message_data_upload(
message: str,
history: List[Dict[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
parquet_data: str
):
history = history or []
try:
# μ¬μ©μμ λ©μμ§λ₯Ό νμ€ν 리μ μΆκ°
history.append({"role": "user", "content": message})
# μλ΅ μμ±
response_gen = respond(
message, history, system_message, max_tokens, temperature, top_p, parquet_data
)
partial_response = ""
for partial in response_gen:
partial_response = partial
# λν λ΄μ μ
λ°μ΄νΈ
display_history = history + [
{"role": "assistant", "content": partial_response}
]
yield display_history, ""
# μ΄μμ€ν΄νΈμ μλ΅μ νμ€ν 리μ μΆκ°
history.append({"role": "assistant", "content": partial_response})
except Exception as e:
response = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
history.append({"role": "assistant", "content": response})
yield history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[
msg_data_upload,
chatbot_data_upload,
system_message,
max_tokens,
temperature,
top_p,
parquet_data_state, # parquet_data_stateλ₯Ό μ¬μ©νμ¬ μ
λ‘λλ λ°μ΄ν°λ₯Ό μ λ¬
],
outputs=[chatbot_data_upload, msg_data_upload],
queue=True
)
# μμ μΆκ°
with gr.Accordion("μμ ", open=False):
gr.Examples(
examples=[
["μ
λ‘λλ λ°μ΄ν°μ
μ λν΄ μμ½ μ€λͺ
νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈ(κ°μ, λ°°κ²½ λ° νμμ±, κΈ°μ‘΄ μ μ¬ μ ν/μλΉμ€μ λΉκ΅νμ¬ νΉμ₯μ , νμ©μ², κ°μΉ, κΈ°λν¨κ³Ό, κ²°λ‘ μ ν¬ν¨)λ‘ 4000 ν ν° μ΄μ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ ν μμΈ νμ΄μ§ νμμ λ΄μ©μ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€ λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² νμ μ μΈ μ°½μ λ°λͺ
λ΄μ©μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μμ±νλΌ."],
],
inputs=msg_data_upload,
label="μμ μ ν",
)
# Parquet νμΌ μ
λ‘λλ₯Ό νλ©΄ νλ¨μΌλ‘ μ΄λ
gr.Markdown("### Parquet νμΌ μ
λ‘λ")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(
label="Parquet νμΌ μ
λ‘λ", type="filepath", elem_id="parquet-upload-area"
)
parquet_upload_button = gr.Button("μ
λ‘λ")
parquet_upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
def handle_parquet_upload(file_path: str):
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", ""
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
# λ λ²μ§Έ ν: λ°μ΄ν° λ³ν (ν μ΄λ¦ λ³κ²½: "CSV to My λ°μ΄ν°μ
")
with gr.Tab("CSV to My λ°μ΄ν°μ
"):
gr.Markdown("### CSV νμΌ μ
λ‘λ λ° Parquet λ³ν")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV νμΌ μ
λ‘λ", type="filepath")
upload_button = gr.Button("μ
λ‘λ λ° λ³ν")
upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_button = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_csv_upload(file_path: str):
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
parquet_content = load_parquet(parquet_filename)
return message, parquet_content, parquet_filename
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
# μΈ λ²μ§Έ ν: ν
μ€νΈ to csv to parquet λ³ν (ν μ΄λ¦ λ³κ²½: "Text to My λ°μ΄ν°μ
")
with gr.Tab("Text to My λ°μ΄ν°μ
"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ CSVλ‘ λ³ν ν ParquetμΌλ‘ μλ μ νλ©λλ€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯ (κ° νμ `id,text,label,metadata` νμμΌλ‘ μ
λ ₯)",
lines=10,
placeholder='μ: 1,"μ΄μμ ","μ₯κ΅°","κ±°λΆμ "\n2,"μκ· ","μ₯κ΅°","λͺ¨ν¨"\n3,"μ μ‘°","μ","μκΈ°"\n4,"λμν λ―Έ νλ°μμ","μ","μΉ¨λ΅"'
)
convert_button = gr.Button("λ³ν λ° λ€μ΄λ‘λ")
convert_status = gr.Textbox(label="λ³ν μν", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_parquet_convert = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_text_to_parquet(text: str):
message, parquet_content, parquet_filename = text_to_parquet(text)
if parquet_filename:
return message, parquet_content, parquet_filename
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# λ€λ²μ§Έ νμ UI λΆλΆ μμ
with gr.Tab("Text Preprocessing with LLM"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ LLMμ΄ λ°μ΄ν°μ
νμμ λ§κ² μ μ²λ¦¬νμ¬ μΆλ ₯ν©λλ€.")
with gr.Row():
with gr.Column():
raw_text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯",
lines=15,
placeholder="μ¬κΈ°μ μ μ²λ¦¬ν ν
μ€νΈλ₯Ό μ
λ ₯νμΈμ..."
)
with gr.Row():
preprocess_button = gr.Button("μ μ²λ¦¬ μ€ν", variant="primary")
clear_button = gr.Button("μ΄κΈ°ν")
preprocess_status = gr.Textbox(
label="μ μ²λ¦¬ μν",
interactive=False,
value="λκΈ° μ€..."
)
processed_text_output = gr.Textbox(
label="μ μ²λ¦¬λ λ°μ΄ν°μ
μΆλ ₯",
lines=15,
interactive=False
)
# Parquet λ³ν λ° λ€μ΄λ‘λ μΉμ
convert_to_parquet_button = gr.Button("ParquetμΌλ‘ λ³ν")
download_parquet = gr.File(label="λ³νλ Parquet νμΌ λ€μ΄λ‘λ")
def handle_text_preprocessing(input_text: str):
if not input_text.strip():
return "μ
λ ₯ ν
μ€νΈκ° μμ΅λλ€.", ""
try:
preprocess_status_msg = "μ μ²λ¦¬λ₯Ό μμν©λλ€..."
yield preprocess_status_msg, ""
processed_text = preprocess_text_with_llm(input_text)
if processed_text:
preprocess_status_msg = "μ μ²λ¦¬κ° μλ£λμμ΅λλ€."
yield preprocess_status_msg, processed_text
else:
preprocess_status_msg = "μ μ²λ¦¬ κ²°κ³Όκ° μμ΅λλ€."
yield preprocess_status_msg, ""
except Exception as e:
error_msg = f"μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
yield error_msg, ""
def clear_inputs():
return "", "λκΈ° μ€...", ""
def convert_to_parquet_file(processed_text: str):
if not processed_text.strip():
return "λ³νν ν
μ€νΈκ° μμ΅λλ€.", None
try:
message, parquet_content, parquet_filename = text_to_parquet(processed_text)
if parquet_filename:
return message, parquet_filename
return message, None
except Exception as e:
return f"Parquet λ³ν μ€ μ€λ₯ λ°μ: {str(e)}", None
# μ΄λ²€νΈ νΈλ€λ¬ μ°κ²°
preprocess_button.click(
handle_text_preprocessing,
inputs=[raw_text_input],
outputs=[preprocess_status, processed_text_output],
queue=True
)
clear_button.click(
clear_inputs,
outputs=[raw_text_input, preprocess_status, processed_text_output]
)
convert_to_parquet_button.click(
convert_to_parquet_file,
inputs=[processed_text_output],
outputs=[preprocess_status, download_parquet]
)
# μμ ν
μ€νΈ μΆκ°
with gr.Accordion("μμ ν
μ€νΈ", open=False):
gr.Examples(
examples=[
["μ΄μμ μ μ‘°μ μ€κΈ°μ 무μ μ΄λ€. κ·Έλ μμ§μλ λΉμ ν΄κ΅°μ μ΄λμλ€. κ±°λΆμ μ λ§λ€μ΄ μκ΅°κ³Ό μΈμ λ€."],
["μΈκ³΅μ§λ₯μ μ»΄ν¨ν° κ³Όνμ ν λΆμΌμ΄λ€. κΈ°κ³νμ΅μ μΈκ³΅μ§λ₯μ νμ λΆμΌμ΄λ€. λ₯λ¬λμ κΈ°κ³νμ΅μ ν λ°©λ²μ΄λ€."]
],
inputs=raw_text_input,
label="μμ μ ν"
)
gr.Markdown("### [email protected]", elem_id="initial-description")
if __name__ == "__main__":
demo.launch(share=True) # μ½λμμ μ€λ₯λ κ°μ μ΄ νμν μ¬νμ μΆλ‘ νμ¬ λ³΄κ³ νλΌ
|