myezrag / app.py
ginipick's picture
Update app.py
b9810ca verified
raw
history blame
19.7 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback
import csv
# μΆ”λ‘  API ν΄λΌμ΄μ–ΈνŠΈ μ„€μ •
hf_client = InferenceClient(
"CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
except Exception as e:
return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
except Exception as e:
return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
def respond(
message: str,
history: List[Dict[str, str]],
system_message: str = "",
max_tokens: int = 4000,
temperature: float = 0.5,
top_p: float = 0.9,
parquet_data: str = None
) -> str:
# μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ μ„€μ •
if parquet_data:
system_prefix = """λ°˜λ“œμ‹œ ν•œκΈ€λ‘œ λ‹΅λ³€ν•  것. λ„ˆλŠ” μ—…λ‘œλ“œλœ 데이터λ₯Ό 기반으둜 μ§ˆλ¬Έμ— λ‹΅λ³€ν•˜λŠ” 역할을 ν•œλ‹€. 데이터λ₯Ό λΆ„μ„ν•˜μ—¬ μ‚¬μš©μžμ—κ²Œ 도움이 λ˜λŠ” 정보λ₯Ό μ œκ³΅ν•˜λΌ. 데이터λ₯Ό ν™œμš©ν•˜μ—¬ μƒμ„Έν•˜κ³  μ •ν™•ν•œ 닡변을 μ œκ³΅ν•˜λ˜, λ―Όκ°ν•œ μ •λ³΄λ‚˜ 개인 정보λ₯Ό λ…ΈμΆœν•˜μ§€ 마라."""
try:
df = pd.read_json(io.StringIO(parquet_data))
# λ°μ΄ν„°μ˜ μš”μ•½ 정보 생성
data_summary = df.describe(include='all').to_string()
system_prefix += f"\n\nμ—…λ‘œλ“œλœ λ°μ΄ν„°μ˜ μš”μ•½ 정보:\n{data_summary}"
except Exception as e:
print(f"데이터 λ‘œλ“œ 쀑 였λ₯˜ λ°œμƒ: {str(e)}\n{traceback.format_exc()}")
system_prefix += "\n\n데이터λ₯Ό λ‘œλ“œν•˜λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€."
else:
system_prefix = system_message or "λ„ˆλŠ” AI μ‘°μ–Έμž 역할이닀."
# λ©”μ‹œμ§€ 생성
prompt = system_prefix + "\n\n"
for chat in history:
if chat['role'] == 'user':
prompt += f"μ‚¬μš©μž: {chat['content']}\n"
else:
prompt += f"AI: {chat['content']}\n"
prompt += f"μ‚¬μš©μž: {message}\nAI:"
try:
# λͺ¨λΈμ— λ©”μ‹œμ§€ 전솑 및 응닡 λ°›κΈ°
response = ""
stream = hf_client.text_generation(
prompt=prompt,
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for msg in stream:
if msg:
response += msg
yield response
except Exception as e:
error_message = f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
yield error_message
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
# CSV 파일 읽기
df = pd.read_csv(file_path, sep=',')
# ν•„μˆ˜ 컬럼 확인
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νŒŒμΌμ— λ‹€μŒ ν•„μˆ˜ 컬럼이 λˆ„λ½λ˜μ—ˆμŠ΅λ‹ˆλ‹€: {', '.join(missing_columns)}", ""
# 데이터 ν΄λ Œμ§•
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
# 데이터 μœ ν˜• μ΅œμ ν™”
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet 파일둜 λ³€ν™˜
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜κ³  λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_filename
except Exception as e:
return f"CSV 파일 μ—…λ‘œλ“œ 및 λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, str]:
try:
# Parquet 파일 읽기
df = pd.read_parquet(file_path, engine='pyarrow')
# Markdown으둜 λ³€ν™˜ν•˜μ—¬ 미리보기
parquet_content = df.head(10).to_markdown(index=False)
# DataFrame을 JSON λ¬Έμžμ—΄λ‘œ λ³€ν™˜
parquet_json = df.to_json(orient='records', force_ascii=False)
return "Parquet 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_json
except Exception as e:
return f"Parquet 파일 μ—…λ‘œλ“œ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", "", ""
def text_to_parquet(text: str) -> Tuple[str, str, str]:
try:
from io import StringIO
# CSV 데이터λ₯Ό StringIOλ₯Ό 톡해 읽기
csv_data = StringIO(text)
df = pd.read_csv(
csv_data,
sep=',',
dtype=str,
quoting=csv.QUOTE_ALL, # λͺ¨λ“  ν•„λ“œλ₯Ό ν°λ”°μ˜΄ν‘œλ‘œ κ°μ‹ΈλŠ” κ²ƒμœΌλ‘œ 처리
escapechar='\\', # μ΄μŠ€μΌ€μ΄ν”„ 문자 μ„€μ •
engine='python', # Python 엔진 μ‚¬μš©
header=None, # 첫 번째 행을 μ—΄ μ΄λ¦„μœΌλ‘œ μ‚¬μš©ν•˜μ§€ μ•ŠμŒ
names=['id', 'text', 'label', 'metadata'] # μ—΄ 이름 지정
)
# 데이터 μœ ν˜• μ΅œμ ν™”
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'string', 'metadata': 'string'})
# Parquet 파일둜 λ³€ν™˜
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet 파일 λ‚΄μš© 미리보기
parquet_content = load_parquet(parquet_filename)
return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_filename
except Exception as e:
error_message = f"ν…μŠ€νŠΈ λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
return error_message, "", ""
def preprocess_text_with_llm(input_text: str) -> str:
# LLMμ—κ²Œ μž…λ ₯ ν…μŠ€νŠΈλ₯Ό μ „μ²˜λ¦¬ν•˜λ„λ‘ μš”μ²­
system_prompt = """당신은 데이터 μ „μ²˜λ¦¬ μ „λ¬Έκ°€μž…λ‹ˆλ‹€. μž…λ ₯된 κΈ΄ ν…μŠ€νŠΈλ₯Ό μ•„λž˜μ™€ 같은 데이터셋 ν˜•μ‹μœΌλ‘œ μ „μ²˜λ¦¬ν•˜μ„Έμš”:
- **데이터셋 ν˜•μ‹:** `id,text,label,metadata`
- **각 행은 μƒˆλ‘œμš΄ μ€„λ‘œ κ΅¬λΆ„λ˜κ³ **, ν•„λ“œλŠ” μ‰Όν‘œλ‘œ κ΅¬λΆ„λ©λ‹ˆλ‹€.
- **ν…μŠ€νŠΈλ‚˜ λ‹€λ₯Έ ν•„λ“œ 내에 μ‰Όν‘œκ°€ μžˆμ„ 경우**, ν•΄λ‹Ή ν•„λ“œλ₯Ό ν°λ”°μ˜΄ν‘œ(")둜 κ°μ‹Έμ„Έμš”.
- **ν•„λ“œ 내에 ν°λ”°μ˜΄ν‘œκ°€ μžˆμ„ 경우**, λ°±μŠ¬λž˜μ‹œ(\\)둜 μ΄μŠ€μΌ€μ΄ν”„ μ²˜λ¦¬ν•˜μ„Έμš”. 예: \\"
- ν…μŠ€νŠΈλ₯Ό **의미 λ‹¨μœ„λ‘œ λΆ„ν• **ν•˜κ³ , 각 λ¬Έμž₯에 λŒ€ν•΄ **1λΆ€ν„° μ‹œμž‘ν•˜λŠ” μ—°μ†λœ id**λ₯Ό λΆ€μ—¬ν•˜μ„Έμš”.
- 각 λ¬Έμž₯에 λŒ€ν•΄ **μ μ ˆν•œ label(μΉ΄ν…Œκ³ λ¦¬)**을 μ§€μ •ν•˜μ„Έμš”. 예: "기술", "μ‚¬νšŒ", "경제"
- **metadata**μ—λŠ” μΆœμ²˜λ‚˜ λ‚ μ§œ λ“±μ˜ μΆ”κ°€ 정보λ₯Ό ν¬ν•¨ν•˜μ„Έμš”.
- μ΅œμ’… κ²°κ³ΌλŠ” **각 행이 `id,text,label,metadata` ν˜•μ‹μ˜ CSV**κ°€ λ˜λ„λ‘ ν•˜μ„Έμš”.
**μ˜ˆμ‹œ:**
μž…λ ₯ ν…μŠ€νŠΈ:
"μ˜€λŠ˜μ€ 날씨가 μ’‹λ‹€. 내일은 λΉ„κ°€ 올 μ˜ˆμ •μ΄λ‹€."
μ „μ²˜λ¦¬λœ 데이터셋:
1,"μ˜€λŠ˜μ€ 날씨가 μ’‹λ‹€.","날씨","2023-10-05"
2,"내일은 λΉ„κ°€ 올 μ˜ˆμ •μ΄λ‹€.","날씨","2023-10-05"
**이제 μ•„λž˜μ˜ μž…λ ₯ ν…μŠ€νŠΈλ₯Ό μ²˜λ¦¬ν•˜μ„Έμš”:**
""" + input_text
# LLM 호좜 및 응닡 처리
try:
response = ""
stream = hf_client.text_generation(
prompt=system_prompt,
max_new_tokens=2000,
temperature=0.5,
top_p=0.9,
stream=True,
)
for msg in stream:
if msg:
response += msg
# 디버깅: LLM의 응닡 좜λ ₯
print("LLM 응닡:\n", response)
processed_text = response.strip()
return processed_text
except Exception as e:
error_message = f"μ „μ²˜λ¦¬ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
return error_message
# CSS μ„€μ •
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 700px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
/* μž…λ ₯μ°½ 배경색 및 κΈ€μžμƒ‰ λ³€κ²½ */
textarea, input[type="text"] {
background-color: #ffffff; /* 흰색 λ°°κ²½ */
color: #000000; /* 검정색 κΈ€μž */
}
/* 파일 μ—…λ‘œλ“œ μ˜μ—­ 높이 쑰절 */
#parquet-upload-area {
max-height: 150px;
overflow-y: auto;
}
/* 초기 μ„€λͺ… 글씨 크기 쑰절 */
#initial-description {
font-size: 14px;
}
"""
# Gradio Blocks μΈν„°νŽ˜μ΄μŠ€ μ„€μ •
with gr.Blocks(css=css) as demo:
gr.Markdown("# My RAG: LLM이 λ‚˜λ§Œμ˜ λ°μ΄ν„°λ‘œ ν•™μŠ΅ν•œ μ½˜ν…μΈ  생성/λ‹΅λ³€", elem_id="initial-description")
gr.Markdown(
"### 1) λ‚˜λ§Œμ˜ 데이터λ₯Ό μž…λ ₯ λ˜λŠ” CSV μ—…λ‘œλ“œλ‘œ Parquet 데이터셋 μžλ™ λ³€ν™˜ 2) Parquet 데이터셋을 μ—…λ‘œλ“œν•˜λ©΄, LLM이 맞좀 ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬ 응닡\n"
"### Tip) '예제'λ₯Ό 톡해 λ‹€μ–‘ν•œ ν™œμš© 방법을 μ²΄ν—˜ν•˜κ³  μ‘μš©ν•΄ λ³΄μ„Έμš”, 데이터셋 μ—…λ‘œλ“œμ‹œ λ―Έλ¦¬λ³΄κΈ°λŠ” 10건만 좜λ ₯",
elem_id="initial-description"
)
# 첫 번째 νƒ­: 챗봇 데이터 μ—…λ‘œλ“œ (νƒ­ 이름 λ³€κ²½: "My 데이터셋+LLM")
with gr.Tab("My 데이터셋+LLM"):
gr.Markdown("### LLMκ³Ό λŒ€ν™”ν•˜κΈ°")
chatbot_data_upload = gr.Chatbot(label="챗봇", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©”μ‹œμ§€ μž…λ ₯", placeholder="여기에 λ©”μ‹œμ§€λ₯Ό μž…λ ₯ν•˜μ„Έμš”...")
send_data_upload = gr.Button("전솑")
with gr.Accordion("μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ 및 μ˜΅μ…˜ μ„€μ •", open=False):
system_message = gr.Textbox(label="System Message", value="λ„ˆλŠ” AI μ‘°μ–Έμž 역할이닀.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
parquet_data_state = gr.State()
def handle_message_data_upload(
message: str,
history: List[Dict[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
parquet_data: str
):
history = history or []
try:
# μ‚¬μš©μžμ˜ λ©”μ‹œμ§€λ₯Ό νžˆμŠ€ν† λ¦¬μ— μΆ”κ°€
history.append({"role": "user", "content": message})
# 응닡 생성
response_gen = respond(
message, history, system_message, max_tokens, temperature, top_p, parquet_data
)
partial_response = ""
for partial in response_gen:
partial_response = partial
# λŒ€ν™” λ‚΄μ—­ μ—…λ°μ΄νŠΈ
display_history = history + [
{"role": "assistant", "content": partial_response}
]
yield display_history, ""
# μ–΄μ‹œμŠ€ν„΄νŠΈμ˜ 응닡을 νžˆμŠ€ν† λ¦¬μ— μΆ”κ°€
history.append({"role": "assistant", "content": partial_response})
except Exception as e:
response = f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
history.append({"role": "assistant", "content": response})
yield history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[ msg_data_upload, chatbot_data_upload, system_message, max_tokens, temperature, top_p, parquet_data_state, # parquet_data_stateλ₯Ό μ‚¬μš©ν•˜μ—¬ μ—…λ‘œλ“œλœ 데이터λ₯Ό 전달 ],
outputs=[chatbot_data_upload, msg_data_upload],
queue=True
)
# 예제 μΆ”κ°€
with gr.Accordion("예제", open=False):
gr.Examples(
examples=[
["μ—…λ‘œλ“œλœ 데이터셋에 λŒ€ν•΄ μš”μ•½ μ„€λͺ…ν•˜λΌ."],
["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, λ³Έ μ„œλΉ„μŠ€λ₯Ό SEO μ΅œμ ν™”ν•˜μ—¬ λΈ”λ‘œκ·Έ 포슀트(κ°œμš”, λ°°κ²½ 및 ν•„μš”μ„±, κΈ°μ‘΄ μœ μ‚¬ μ œν’ˆ/μ„œλΉ„μŠ€μ™€ λΉ„κ΅ν•˜μ—¬ 특μž₯점, ν™œμš©μ²˜, κ°€μΉ˜, κΈ°λŒ€νš¨κ³Ό, 결둠을 포함)둜 4000 토큰 이상 μž‘μ„±ν•˜λΌ"],
["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, μ‚¬μš© 방법과 차별점, νŠΉμ§•, 강점을 μ€‘μ‹¬μœΌλ‘œ 4000 토큰 이상 유튜브 μ˜μƒ 슀크립트 ν˜•νƒœλ‘œ μž‘μ„±ν•˜λΌ"],
["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, μ œν’ˆ 상세 νŽ˜μ΄μ§€ ν˜•μ‹μ˜ λ‚΄μš©μ„ 4000 토큰 이상 μžμ„Ένžˆ μ„€λͺ…ν•˜λΌ"],
["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, FAQ 20건을 μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜λΌ. 4000토큰 이상 μ‚¬μš©ν•˜λΌ."],
["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, νŠΉν—ˆ μΆœμ›μ— ν™œμš©ν•  기술 및 λΉ„μ¦ˆλ‹ˆμŠ€ λͺ¨λΈ 츑면을 ν¬ν•¨ν•˜μ—¬ νŠΉν—ˆ μΆœμ›μ„œ ꡬ성에 맞게 ν˜μ‹ μ μΈ 창의 발λͺ… λ‚΄μš©μ„ μ€‘μ‹¬μœΌλ‘œ 4000 토큰 이상 μž‘μ„±ν•˜λΌ."],
],
inputs=msg_data_upload,
label="예제 선택",
)
# Parquet 파일 μ—…λ‘œλ“œλ₯Ό ν™”λ©΄ ν•˜λ‹¨μœΌλ‘œ 이동
gr.Markdown("### Parquet 파일 μ—…λ‘œλ“œ")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(
label="Parquet 파일 μ—…λ‘œλ“œ", type="filepath", elem_id="parquet-upload-area"
)
parquet_upload_button = gr.Button("μ—…λ‘œλ“œ")
parquet_upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet 파일 미리보기")
def handle_parquet_upload(file_path: str):
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", ""
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
# 두 번째 νƒ­: 데이터 λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "CSV to My 데이터셋")
with gr.Tab("CSV to My 데이터셋"):
gr.Markdown("### CSV 파일 μ—…λ‘œλ“œ 및 Parquet λ³€ν™˜")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV 파일 μ—…λ‘œλ“œ", type="filepath")
upload_button = gr.Button("μ—…λ‘œλ“œ 및 λ³€ν™˜")
upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
parquet_preview = gr.Markdown(label="Parquet 파일 미리보기")
download_button = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)
def handle_csv_upload(file_path: str):
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
parquet_content = load_parquet(parquet_filename)
return message, parquet_content, parquet_filename
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
# μ„Έ 번째 νƒ­: ν…μŠ€νŠΈ to csv to parquet λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "Text to My 데이터셋")
with gr.Tab("Text to My 데이터셋"):
gr.Markdown("### ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ CSV둜 λ³€ν™˜ ν›„ Parquet으둜 μžλ™ μ „ν™˜λ©λ‹ˆλ‹€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν…μŠ€νŠΈ μž…λ ₯ (각 행은 `id,text,label,metadata` ν˜•μ‹μœΌλ‘œ μž…λ ₯)",
lines=10,
placeholder='예: 1,"μ΄μˆœμ‹ ","μž₯κ΅°","거뢁선"\n2,"원균","μž₯κ΅°","λͺ¨ν•¨"\n3,"μ„ μ‘°","μ™•","μ‹œκΈ°"\n4,"λ„μš”ν† λ―Έ νžˆλ°μš”μ‹œ","μ™•","침랡"'
)
convert_button = gr.Button("λ³€ν™˜ 및 λ‹€μš΄λ‘œλ“œ")
convert_status = gr.Textbox(label="λ³€ν™˜ μƒνƒœ", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet 파일 미리보기")
download_parquet_convert = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)
def handle_text_to_parquet(text: str):
message, parquet_content, parquet_filename = text_to_parquet(text)
if parquet_filename:
return message, parquet_content, parquet_filename
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# λ„€ 번째 νƒ­: ν…μŠ€νŠΈλ₯Ό 데이터셋 ν˜•μ‹μœΌλ‘œ μ „μ²˜λ¦¬ (νƒ­ 이름: "Text Preprocessing with LLM")
with gr.Tab("Text Preprocessing with LLM"):
gr.Markdown("### ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ LLM이 데이터셋 ν˜•μ‹μ— 맞게 μ „μ²˜λ¦¬ν•˜μ—¬ 좜λ ₯ν•©λ‹ˆλ‹€.")
with gr.Row():
with gr.Column():
raw_text_input = gr.Textbox(
label="ν…μŠ€νŠΈ μž…λ ₯",
lines=15,
placeholder="여기에 μ „μ²˜λ¦¬ν•  ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”..."
)
preprocess_button = gr.Button("μ „μ²˜λ¦¬ μ‹€ν–‰")
preprocess_status = gr.Textbox(label="μ „μ²˜λ¦¬ μƒνƒœ", interactive=False)
processed_text_output = gr.Textbox(
label="μ „μ²˜λ¦¬λœ 데이터셋 좜λ ₯",
lines=15,
interactive=False
)
def handle_text_preprocessing(input_text: str):
preprocess_status.value = "μ „μ²˜λ¦¬ μ€‘μž…λ‹ˆλ‹€. μž μ‹œλ§Œ κΈ°λ‹€λ €μ£Όμ„Έμš”..."
processed_text = preprocess_text_with_llm(input_text)
preprocess_status.value = "μ „μ²˜λ¦¬κ°€ μ™„λ£Œλ˜μ—ˆμŠ΅λ‹ˆλ‹€."
return preprocess_status.value, processed_text
preprocess_button.click(
handle_text_preprocessing,
inputs=raw_text_input,
outputs=[preprocess_status, processed_text_output]
)
gr.Markdown("### [email protected]", elem_id="initial-description")
if __name__ == "__main__":
demo.launch()