ginipick commited on
Commit
96d612b
ยท
verified ยท
1 Parent(s): 4a3346c

Create uhdimage.cod

Browse files
Files changed (1) hide show
  1. uhdimage.cod +271 -0
uhdimage.cod ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import torch
4
+ import sys
5
+ sys.path.append(os.path.abspath('./'))
6
+ from inference.utils import *
7
+ from train import WurstCoreB
8
+ from gdf import DDPMSampler
9
+ from train import WurstCore_t2i as WurstCoreC
10
+ import numpy as np
11
+ import random
12
+ import argparse
13
+ import gradio as gr
14
+ import spaces
15
+ from huggingface_hub import hf_hub_url
16
+ import subprocess
17
+ from huggingface_hub import hf_hub_download
18
+ from transformers import pipeline
19
+
20
+ # Initialize the translation pipeline
21
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
22
+
23
+ def parse_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument('--height', type=int, default=2560, help='image height')
26
+ parser.add_argument('--width', type=int, default=5120, help='image width')
27
+ parser.add_argument('--seed', type=int, default=123, help='random seed')
28
+ parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
29
+ parser.add_argument('--config_c', type=str,
30
+ default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
31
+ parser.add_argument('--config_b', type=str,
32
+ default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
33
+ parser.add_argument('--prompt', type=str,
34
+ default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
35
+ parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
36
+ parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
37
+ parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
38
+ parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
39
+ args = parser.parse_args()
40
+ return args
41
+
42
+ def clear_image():
43
+ return None
44
+
45
+ def load_message(height, width, seed, prompt, args, stage_a_tiled):
46
+ args.height = height
47
+ args.width = width
48
+ args.seed = seed
49
+ args.prompt = prompt + ' rich detail, 4k, high quality'
50
+ args.stage_a_tiled = stage_a_tiled
51
+ return args
52
+
53
+ def is_korean(text):
54
+ return any('\uac00' <= char <= '\ud7a3' for char in text)
55
+
56
+ def translate_if_korean(text):
57
+ if is_korean(text):
58
+ translated = translator(text, max_length=512)[0]['translation_text']
59
+ print(f"Translated from Korean: {text} -> {translated}")
60
+ return translated
61
+ return text
62
+
63
+ @spaces.GPU(duration=120)
64
+ def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
65
+ global args
66
+
67
+ # Translate the prompt if it's in Korean
68
+ prompt = translate_if_korean(prompt)
69
+
70
+ args = load_message(height, width, seed, prompt, args, stage_a_tiled)
71
+ torch.manual_seed(args.seed)
72
+ random.seed(args.seed)
73
+ np.random.seed(args.seed)
74
+ dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
75
+
76
+ captions = [args.prompt] * args.num_image
77
+ height, width = args.height, args.width
78
+ batch_size = 1
79
+ height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
80
+ stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
81
+ stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
82
+
83
+ # Stage C Parameters
84
+ extras.sampling_configs['cfg'] = 4
85
+ extras.sampling_configs['shift'] = 1
86
+ extras.sampling_configs['timesteps'] = 20
87
+ extras.sampling_configs['t_start'] = 1.0
88
+ extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
89
+
90
+ # Stage B Parameters
91
+ extras_b.sampling_configs['cfg'] = 1.1
92
+ extras_b.sampling_configs['shift'] = 1
93
+ extras_b.sampling_configs['timesteps'] = 10
94
+ extras_b.sampling_configs['t_start'] = 1.0
95
+
96
+ for _, caption in enumerate(captions):
97
+ batch = {'captions': [caption] * batch_size}
98
+ conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
99
+ unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
100
+
101
+ with torch.no_grad():
102
+ models.generator.cuda()
103
+ print('STAGE C GENERATION***************************')
104
+ with torch.cuda.amp.autocast(dtype=dtype):
105
+ sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
106
+
107
+ models.generator.cpu()
108
+ torch.cuda.empty_cache()
109
+
110
+ conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
111
+ unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
112
+ conditions_b['effnet'] = sampled_c
113
+ unconditions_b['effnet'] = torch.zeros_like(sampled_c)
114
+ print('STAGE B + A DECODING***************************')
115
+
116
+ with torch.cuda.amp.autocast(dtype=dtype):
117
+ sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
118
+
119
+ torch.cuda.empty_cache()
120
+ imgs = show_images(sampled)
121
+
122
+ return imgs[0]
123
+
124
+ css = """
125
+ footer {
126
+ visibility: hidden;
127
+ }
128
+ """
129
+
130
+ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
131
+ with gr.Column(elem_id="col-container"):
132
+ gr.Markdown("<h1><center>์ธ์‡„์— ์ตœ์ ํ™”๋œ ์ดˆ๊ณ ํ•ด์ƒ๋„ 5120 X 4096 ํ”ฝ์…€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ</center></h1>")
133
+
134
+ with gr.Row():
135
+ prompt = gr.Textbox(
136
+ label="Text Prompt (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด๋กœ ์ž…๋ ฅํ•˜์„ธ์š”)",
137
+ show_label=False,
138
+ max_lines=1,
139
+ placeholder="ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š” (Enter your prompt in Korean or English)",
140
+ container=False
141
+ )
142
+ polish_button = gr.Button("์ œ์ถœ! (Submit!)", scale=0)
143
+
144
+ output_img = gr.Image(label="Output Image", show_label=False)
145
+
146
+ with gr.Accordion("Advanced Settings", open=False):
147
+ seed = gr.Number(
148
+ label="Random Seed",
149
+ value=123,
150
+ step=1,
151
+ minimum=0,
152
+ )
153
+
154
+ with gr.Row():
155
+ width = gr.Slider(
156
+ label="Width",
157
+ minimum=1536,
158
+ maximum=5120,
159
+ step=32,
160
+ value=4096
161
+ )
162
+
163
+ height = gr.Slider(
164
+ label="Height",
165
+ minimum=1536,
166
+ maximum=4096,
167
+ step=32,
168
+ value=2304
169
+ )
170
+
171
+ with gr.Row():
172
+ cfg = gr.Slider(
173
+ label="CFG",
174
+ minimum=3,
175
+ maximum=10,
176
+ step=0.1,
177
+ value=4
178
+ )
179
+
180
+ timesteps = gr.Slider(
181
+ label="Timesteps",
182
+ minimum=10,
183
+ maximum=50,
184
+ step=1,
185
+ value=20
186
+ )
187
+
188
+ stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
189
+
190
+ clear_button = gr.Button("Clear!")
191
+
192
+ gr.Examples(
193
+ examples=[
194
+ "A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
195
+ "๋ˆˆ ๋ฎ์ธ ์‚ฐ๋งฅ์˜ ์žฅ์—„ํ•œ ์ „๊ฒฝ, ํ‘ธ๋ฅธ ํ•˜๋Š˜์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ํ•œ ๊ณ ์š”ํ•œ ํ˜ธ์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจ์Šต",
196
+ "The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
197
+ "์Šค์›จํ„ฐ๋ฅผ ์ž…์€ ์•…์–ด",
198
+ "A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
199
+ "๊ณจ๋“  ๋ฆฌํŠธ๋ฆฌ๋ฒ„ ๊ฐ•์•„์ง€๊ฐ€ ํ‘ธ๋ฅธ ์ž”๋””๋ฐญ์—์„œ ๋นจ๊ฐ„ ๊ณต์„ ์ซ“๋Š” ๊ท€์—ฌ์šด ๋ชจ์Šต",
200
+ "A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
201
+ "์บ๋‚˜๋‹ค ๋ฐดํ”„ ๊ตญ๋ฆฝ๊ณต์›์˜ ์•„๋ฆ„๋‹ค์šด ํ’๊ฒฝ, ์ฒญ๋ก์ƒ‰ ํ˜ธ์ˆ˜์™€ ๋ˆˆ ๋ฎ์ธ ์‚ฐ๋“ค, ์šธ์ฐฝํ•œ ์†Œ๋‚˜๋ฌด ์ˆฒ์ด ์–ด์šฐ๋Ÿฌ์ง„ ๋ชจ์Šต",
202
+ "๊ท€์—ฌ์šด ์‹œ์ธ„๊ฐ€ ์š•์กฐ์—์„œ ๋ชฉ์š•ํ•˜๋Š” ๋ชจ์Šต, ๊ฑฐํ’ˆ์— ๋‘˜๋Ÿฌ์‹ธ์ธ ์ฑ„ ์‚ด์ง ์ –์€ ๋ชจ์Šต์œผ๋กœ ์นด๋ฉ”๋ผ๋ฅผ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ์Œ",
203
+ ],
204
+ inputs=[prompt],
205
+ outputs=[output_img],
206
+ examples_per_page=5
207
+ )
208
+
209
+ polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
210
+ polish_button.click(clear_image, inputs=[], outputs=output_img)
211
+
212
+ def download_with_wget(url, save_path):
213
+ try:
214
+ subprocess.run(['wget', url, '-O', save_path], check=True)
215
+ print(f"Downloaded to {save_path}")
216
+ except subprocess.CalledProcessError as e:
217
+ print(f"Error downloading file: {e}")
218
+
219
+ def download_model():
220
+ urls = [
221
+ 'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
222
+ 'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
223
+ 'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
224
+ 'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
225
+ 'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
226
+ ]
227
+ for file_url in urls:
228
+ hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
229
+ hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
230
+
231
+ if __name__ == "__main__":
232
+ args = parse_args()
233
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
234
+ download_model()
235
+ config_file = args.config_c
236
+ with open(config_file, "r", encoding="utf-8") as file:
237
+ loaded_config = yaml.safe_load(file)
238
+
239
+ core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
240
+
241
+ # SETUP STAGE B
242
+ config_file_b = args.config_b
243
+ with open(config_file_b, "r", encoding="utf-8") as file:
244
+ config_file_b = yaml.safe_load(file)
245
+
246
+ core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
247
+
248
+ extras = core.setup_extras_pre()
249
+ models = core.setup_models(extras)
250
+ models.generator.eval().requires_grad_(False)
251
+ print("STAGE C READY")
252
+
253
+ extras_b = core_b.setup_extras_pre()
254
+ models_b = core_b.setup_models(extras_b, skip_clip=True)
255
+ models_b = WurstCoreB.Models(
256
+ **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
257
+ )
258
+ models_b.generator.bfloat16().eval().requires_grad_(False)
259
+ print("STAGE B READY")
260
+
261
+ pretrained_path = args.pretrained_path
262
+ sdd = torch.load(pretrained_path, map_location='cpu')
263
+ collect_sd = {}
264
+ for k, v in sdd.items():
265
+ collect_sd[k[7:]] = v
266
+
267
+ models.train_norm.load_state_dict(collect_sd)
268
+ models.generator.eval()
269
+ models.train_norm.eval()
270
+
271
+ demo.launch(debug=True, share=True, auth=("gini","pick"))