Create uhdimage.cod
Browse files- uhdimage.cod +271 -0
uhdimage.cod
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
import sys
|
5 |
+
sys.path.append(os.path.abspath('./'))
|
6 |
+
from inference.utils import *
|
7 |
+
from train import WurstCoreB
|
8 |
+
from gdf import DDPMSampler
|
9 |
+
from train import WurstCore_t2i as WurstCoreC
|
10 |
+
import numpy as np
|
11 |
+
import random
|
12 |
+
import argparse
|
13 |
+
import gradio as gr
|
14 |
+
import spaces
|
15 |
+
from huggingface_hub import hf_hub_url
|
16 |
+
import subprocess
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
# Initialize the translation pipeline
|
21 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
22 |
+
|
23 |
+
def parse_args():
|
24 |
+
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument('--height', type=int, default=2560, help='image height')
|
26 |
+
parser.add_argument('--width', type=int, default=5120, help='image width')
|
27 |
+
parser.add_argument('--seed', type=int, default=123, help='random seed')
|
28 |
+
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
|
29 |
+
parser.add_argument('--config_c', type=str,
|
30 |
+
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
|
31 |
+
parser.add_argument('--config_b', type=str,
|
32 |
+
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
|
33 |
+
parser.add_argument('--prompt', type=str,
|
34 |
+
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
|
35 |
+
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
|
36 |
+
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
|
37 |
+
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
|
38 |
+
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
|
39 |
+
args = parser.parse_args()
|
40 |
+
return args
|
41 |
+
|
42 |
+
def clear_image():
|
43 |
+
return None
|
44 |
+
|
45 |
+
def load_message(height, width, seed, prompt, args, stage_a_tiled):
|
46 |
+
args.height = height
|
47 |
+
args.width = width
|
48 |
+
args.seed = seed
|
49 |
+
args.prompt = prompt + ' rich detail, 4k, high quality'
|
50 |
+
args.stage_a_tiled = stage_a_tiled
|
51 |
+
return args
|
52 |
+
|
53 |
+
def is_korean(text):
|
54 |
+
return any('\uac00' <= char <= '\ud7a3' for char in text)
|
55 |
+
|
56 |
+
def translate_if_korean(text):
|
57 |
+
if is_korean(text):
|
58 |
+
translated = translator(text, max_length=512)[0]['translation_text']
|
59 |
+
print(f"Translated from Korean: {text} -> {translated}")
|
60 |
+
return translated
|
61 |
+
return text
|
62 |
+
|
63 |
+
@spaces.GPU(duration=120)
|
64 |
+
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
65 |
+
global args
|
66 |
+
|
67 |
+
# Translate the prompt if it's in Korean
|
68 |
+
prompt = translate_if_korean(prompt)
|
69 |
+
|
70 |
+
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
|
71 |
+
torch.manual_seed(args.seed)
|
72 |
+
random.seed(args.seed)
|
73 |
+
np.random.seed(args.seed)
|
74 |
+
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
|
75 |
+
|
76 |
+
captions = [args.prompt] * args.num_image
|
77 |
+
height, width = args.height, args.width
|
78 |
+
batch_size = 1
|
79 |
+
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
|
80 |
+
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
81 |
+
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
|
82 |
+
|
83 |
+
# Stage C Parameters
|
84 |
+
extras.sampling_configs['cfg'] = 4
|
85 |
+
extras.sampling_configs['shift'] = 1
|
86 |
+
extras.sampling_configs['timesteps'] = 20
|
87 |
+
extras.sampling_configs['t_start'] = 1.0
|
88 |
+
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
|
89 |
+
|
90 |
+
# Stage B Parameters
|
91 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
92 |
+
extras_b.sampling_configs['shift'] = 1
|
93 |
+
extras_b.sampling_configs['timesteps'] = 10
|
94 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
95 |
+
|
96 |
+
for _, caption in enumerate(captions):
|
97 |
+
batch = {'captions': [caption] * batch_size}
|
98 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
99 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
100 |
+
|
101 |
+
with torch.no_grad():
|
102 |
+
models.generator.cuda()
|
103 |
+
print('STAGE C GENERATION***************************')
|
104 |
+
with torch.cuda.amp.autocast(dtype=dtype):
|
105 |
+
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
|
106 |
+
|
107 |
+
models.generator.cpu()
|
108 |
+
torch.cuda.empty_cache()
|
109 |
+
|
110 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
111 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
112 |
+
conditions_b['effnet'] = sampled_c
|
113 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
114 |
+
print('STAGE B + A DECODING***************************')
|
115 |
+
|
116 |
+
with torch.cuda.amp.autocast(dtype=dtype):
|
117 |
+
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
|
118 |
+
|
119 |
+
torch.cuda.empty_cache()
|
120 |
+
imgs = show_images(sampled)
|
121 |
+
|
122 |
+
return imgs[0]
|
123 |
+
|
124 |
+
css = """
|
125 |
+
footer {
|
126 |
+
visibility: hidden;
|
127 |
+
}
|
128 |
+
"""
|
129 |
+
|
130 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
131 |
+
with gr.Column(elem_id="col-container"):
|
132 |
+
gr.Markdown("<h1><center>์ธ์์ ์ต์ ํ๋ ์ด๊ณ ํด์๋ 5120 X 4096 ํฝ์
์ด๋ฏธ์ง ์์ฑ</center></h1>")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
prompt = gr.Textbox(
|
136 |
+
label="Text Prompt (ํ๊ธ ๋๋ ์์ด๋ก ์
๋ ฅํ์ธ์)",
|
137 |
+
show_label=False,
|
138 |
+
max_lines=1,
|
139 |
+
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (Enter your prompt in Korean or English)",
|
140 |
+
container=False
|
141 |
+
)
|
142 |
+
polish_button = gr.Button("์ ์ถ! (Submit!)", scale=0)
|
143 |
+
|
144 |
+
output_img = gr.Image(label="Output Image", show_label=False)
|
145 |
+
|
146 |
+
with gr.Accordion("Advanced Settings", open=False):
|
147 |
+
seed = gr.Number(
|
148 |
+
label="Random Seed",
|
149 |
+
value=123,
|
150 |
+
step=1,
|
151 |
+
minimum=0,
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
width = gr.Slider(
|
156 |
+
label="Width",
|
157 |
+
minimum=1536,
|
158 |
+
maximum=5120,
|
159 |
+
step=32,
|
160 |
+
value=4096
|
161 |
+
)
|
162 |
+
|
163 |
+
height = gr.Slider(
|
164 |
+
label="Height",
|
165 |
+
minimum=1536,
|
166 |
+
maximum=4096,
|
167 |
+
step=32,
|
168 |
+
value=2304
|
169 |
+
)
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
cfg = gr.Slider(
|
173 |
+
label="CFG",
|
174 |
+
minimum=3,
|
175 |
+
maximum=10,
|
176 |
+
step=0.1,
|
177 |
+
value=4
|
178 |
+
)
|
179 |
+
|
180 |
+
timesteps = gr.Slider(
|
181 |
+
label="Timesteps",
|
182 |
+
minimum=10,
|
183 |
+
maximum=50,
|
184 |
+
step=1,
|
185 |
+
value=20
|
186 |
+
)
|
187 |
+
|
188 |
+
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
|
189 |
+
|
190 |
+
clear_button = gr.Button("Clear!")
|
191 |
+
|
192 |
+
gr.Examples(
|
193 |
+
examples=[
|
194 |
+
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
|
195 |
+
"๋ ๋ฎ์ธ ์ฐ๋งฅ์ ์ฅ์ํ ์ ๊ฒฝ, ํธ๋ฅธ ํ๋์ ๋ฐฐ๊ฒฝ์ผ๋ก ํ ๊ณ ์ํ ํธ์๊ฐ ์๋ ๋ชจ์ต",
|
196 |
+
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
|
197 |
+
"์ค์จํฐ๋ฅผ ์
์ ์
์ด",
|
198 |
+
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
|
199 |
+
"๊ณจ๋ ๋ฆฌํธ๋ฆฌ๋ฒ ๊ฐ์์ง๊ฐ ํธ๋ฅธ ์๋๋ฐญ์์ ๋นจ๊ฐ ๊ณต์ ์ซ๋ ๊ท์ฌ์ด ๋ชจ์ต",
|
200 |
+
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
|
201 |
+
"์บ๋๋ค ๋ฐดํ ๊ตญ๋ฆฝ๊ณต์์ ์๋ฆ๋ค์ด ํ๊ฒฝ, ์ฒญ๋ก์ ํธ์์ ๋ ๋ฎ์ธ ์ฐ๋ค, ์ธ์ฐฝํ ์๋๋ฌด ์ฒ์ด ์ด์ฐ๋ฌ์ง ๋ชจ์ต",
|
202 |
+
"๊ท์ฌ์ด ์์ธ๊ฐ ์์กฐ์์ ๋ชฉ์ํ๋ ๋ชจ์ต, ๊ฑฐํ์ ๋๋ฌ์ธ์ธ ์ฑ ์ด์ง ์ ์ ๋ชจ์ต์ผ๋ก ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๊ณ ์์",
|
203 |
+
],
|
204 |
+
inputs=[prompt],
|
205 |
+
outputs=[output_img],
|
206 |
+
examples_per_page=5
|
207 |
+
)
|
208 |
+
|
209 |
+
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
|
210 |
+
polish_button.click(clear_image, inputs=[], outputs=output_img)
|
211 |
+
|
212 |
+
def download_with_wget(url, save_path):
|
213 |
+
try:
|
214 |
+
subprocess.run(['wget', url, '-O', save_path], check=True)
|
215 |
+
print(f"Downloaded to {save_path}")
|
216 |
+
except subprocess.CalledProcessError as e:
|
217 |
+
print(f"Error downloading file: {e}")
|
218 |
+
|
219 |
+
def download_model():
|
220 |
+
urls = [
|
221 |
+
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
|
222 |
+
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
|
223 |
+
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
|
224 |
+
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
|
225 |
+
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
|
226 |
+
]
|
227 |
+
for file_url in urls:
|
228 |
+
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
|
229 |
+
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
args = parse_args()
|
233 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
234 |
+
download_model()
|
235 |
+
config_file = args.config_c
|
236 |
+
with open(config_file, "r", encoding="utf-8") as file:
|
237 |
+
loaded_config = yaml.safe_load(file)
|
238 |
+
|
239 |
+
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
|
240 |
+
|
241 |
+
# SETUP STAGE B
|
242 |
+
config_file_b = args.config_b
|
243 |
+
with open(config_file_b, "r", encoding="utf-8") as file:
|
244 |
+
config_file_b = yaml.safe_load(file)
|
245 |
+
|
246 |
+
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
247 |
+
|
248 |
+
extras = core.setup_extras_pre()
|
249 |
+
models = core.setup_models(extras)
|
250 |
+
models.generator.eval().requires_grad_(False)
|
251 |
+
print("STAGE C READY")
|
252 |
+
|
253 |
+
extras_b = core_b.setup_extras_pre()
|
254 |
+
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
255 |
+
models_b = WurstCoreB.Models(
|
256 |
+
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
257 |
+
)
|
258 |
+
models_b.generator.bfloat16().eval().requires_grad_(False)
|
259 |
+
print("STAGE B READY")
|
260 |
+
|
261 |
+
pretrained_path = args.pretrained_path
|
262 |
+
sdd = torch.load(pretrained_path, map_location='cpu')
|
263 |
+
collect_sd = {}
|
264 |
+
for k, v in sdd.items():
|
265 |
+
collect_sd[k[7:]] = v
|
266 |
+
|
267 |
+
models.train_norm.load_state_dict(collect_sd)
|
268 |
+
models.generator.eval()
|
269 |
+
models.train_norm.eval()
|
270 |
+
|
271 |
+
demo.launch(debug=True, share=True, auth=("gini","pick"))
|