import os import yaml import torch import sys sys.path.append(os.path.abspath('./')) from inference.utils import * from train import WurstCoreB from gdf import DDPMSampler from train import WurstCore_t2i as WurstCoreC import numpy as np import random import argparse import gradio as gr import spaces from huggingface_hub import hf_hub_url import subprocess from huggingface_hub import hf_hub_download from transformers import pipeline # Initialize the translation pipeline translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--height', type=int, default=2560, help='image height') parser.add_argument('--width', type=int, default=5120, help='image width') parser.add_argument('--seed', type=int, default=123, help='random seed') parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32') parser.add_argument('--config_c', type=str, default='configs/training/t2i.yaml', help='config file for stage c, latent generation') parser.add_argument('--config_b', type=str, default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding') parser.add_argument('--prompt', type=str, default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt') parser.add_argument('--num_image', type=int, default=1, help='how many images generated') parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image') parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory') parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel') args = parser.parse_args() return args def clear_image(): return None def load_message(height, width, seed, prompt, args, stage_a_tiled): args.height = height args.width = width args.seed = seed args.prompt = prompt + ' rich detail, 4k, high quality' args.stage_a_tiled = stage_a_tiled return args def is_korean(text): return any('\uac00' <= char <= '\ud7a3' for char in text) def translate_if_korean(text): if is_korean(text): translated = translator(text, max_length=512)[0]['translation_text'] print(f"Translated from Korean: {text} -> {translated}") return translated return text @spaces.GPU(duration=120) def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled): global args # Translate the prompt if it's in Korean prompt = translate_if_korean(prompt) args = load_message(height, width, seed, prompt, args, stage_a_tiled) torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float captions = [args.prompt] * args.num_image height, width = args.height, args.width batch_size = 1 height_lr, width_lr = get_target_lr_size(height / width, std_size=32) stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size) stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size) # Stage C Parameters extras.sampling_configs['cfg'] = 4 extras.sampling_configs['shift'] = 1 extras.sampling_configs['timesteps'] = 20 extras.sampling_configs['t_start'] = 1.0 extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf) # Stage B Parameters extras_b.sampling_configs['cfg'] = 1.1 extras_b.sampling_configs['shift'] = 1 extras_b.sampling_configs['timesteps'] = 10 extras_b.sampling_configs['t_start'] = 1.0 for _, caption in enumerate(captions): batch = {'captions': [caption] * batch_size} conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) with torch.no_grad(): models.generator.cuda() print('STAGE C GENERATION***************************') with torch.cuda.amp.autocast(dtype=dtype): sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device) models.generator.cpu() torch.cuda.empty_cache() conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) conditions_b['effnet'] = sampled_c unconditions_b['effnet'] = torch.zeros_like(sampled_c) print('STAGE B + A DECODING***************************') with torch.cuda.amp.autocast(dtype=dtype): sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled) torch.cuda.empty_cache() imgs = show_images(sampled) return imgs[0] css = """ footer { visibility: hidden; } """ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("