|
import gradio as gr |
|
import pickle |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
with open("model.pkl", "rb") as f: |
|
model = pickle.load(f) |
|
|
|
|
|
def preprocess_image(img: Image.Image): |
|
|
|
img = img.resize((64, 64)) |
|
img_array = np.array(img) |
|
if img_array.ndim == 3 and img_array.shape[2] == 3: |
|
img_array = img_array.mean(axis=2) |
|
img_flat = img_array.flatten() |
|
return img_flat |
|
|
|
|
|
def predict(image): |
|
try: |
|
img_flat = preprocess_image(image) |
|
prediction = model.predict([img_flat])[0] |
|
return prediction |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs="text", |
|
title="Cat vs Dog Classifier", |
|
description="Upload an image and the model will predict: cat, dog, or idk.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|
|
|