giseldo commited on
Commit
ae69b09
·
verified ·
1 Parent(s): 7f3a393

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -51
app.py CHANGED
@@ -1,64 +1,48 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
41
 
 
 
 
42
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # openAI Model e openAI Embedings
 
 
 
 
 
 
2
 
3
+ from langchain_community.document_loaders import UnstructuredMarkdownLoader
4
+ from langchain_core.documents import Document
5
 
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+ from langchain_community.embeddings import OpenAIEmbeddings
8
+ from langchain_community.vectorstores import Chroma
9
+ from langchain.chains import RetrievalQA
10
+ from langchain.chat_models import init_chat_model
11
+ import gradio as gr
 
 
 
12
 
13
+ llm = init_chat_model("gpt-4o-mini", model_provider="openai")
 
 
 
 
14
 
15
+ loader = UnstructuredMarkdownLoader("manual.md")
16
+ documentos = loader.load()
17
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
18
+ textos = text_splitter.split_documents(documentos)
19
 
20
+ embeddings = OpenAIEmbeddings()
21
+ db = Chroma.from_documents(textos, embeddings)
22
 
23
+ retriever = db.as_retriever(search_kwargs={"k": 3})
 
 
 
 
 
 
 
24
 
25
+ qa_chain = RetrievalQA.from_chain_type(
26
+ llm=llm,
27
+ chain_type="stuff",
28
+ retriever=retriever,
29
+ verbose=True
30
+ )
31
 
32
+ def consultar_base_conhecimento(pergunta, history):
33
+ resposta = qa_chain.run(pergunta)
34
+ return resposta
35
 
36
+ css = """
37
+ footer { display: none !important; }
38
+ .footer { display: none !important; }
39
+ .gradio-footer { display: none !important;}"
40
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ with gr.Blocks(css=css) as demo:
43
+ demo = gr.ChatInterface(fn=consultar_base_conhecimento, title="Chatbot de Perguntas e Respostas", examples=["O que você sabe?", "Quem é o reitor?", "Como funciona o processo de matrícula?", "Como solicitar um histórico escolar?","Quais são as regras para aprovação nas disciplinas?"])
44
+ gr.HTML("<div style='text-align: center; width: 100%; margin-top: 10px; padding: 5px;'><p>O conteúdo gerado pode conter erros ou informações falsas.</p><p>© Construído por Giseldo Neo</p>")
45
 
46
+ # Iniciar o aplicativo
47
  if __name__ == "__main__":
48
+ demo.launch()