inclusao do hf_token
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import torch
|
|
|
4 |
|
5 |
# Carrega o modelo e o tokenizer localmente
|
6 |
model_name = "google/gemma-3-1b-it" # Substitua pelo caminho local se jΓ‘ baixou
|
|
|
7 |
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
10 |
|
11 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.7)
|
12 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import torch
|
4 |
+
import os
|
5 |
|
6 |
# Carrega o modelo e o tokenizer localmente
|
7 |
model_name = "google/gemma-3-1b-it" # Substitua pelo caminho local se jΓ‘ baixou
|
8 |
+
hf_token = os.getenv("HF_TOKEN")
|
9 |
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", use_auth_token=hf_token)
|
12 |
|
13 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.7)
|
14 |
|