Spaces:
Running
Running
ultima versao
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ def calcula_MbR(titulo, descricao, nome_projeto):
|
|
31 |
context = titulo + descricao
|
32 |
d = {"context_": [context]}
|
33 |
df = pd.DataFrame(data=d, columns=["context_"])
|
34 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_mbr.joblib", force_download=False))
|
35 |
story_points_MbR = model.predict(df["context_"])
|
36 |
return story_points_MbR
|
37 |
|
@@ -39,12 +39,12 @@ def calcula_Median(titulo, descricao, nome_projeto):
|
|
39 |
context = titulo + descricao
|
40 |
d = {"context_": [context]}
|
41 |
df = pd.DataFrame(data=d, columns=["context_"])
|
42 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_median.joblib", force_download=False))
|
43 |
story_points_MbR = model.predict(df["context_"])
|
44 |
return story_points_MbR
|
45 |
|
46 |
def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
|
47 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_neosp_svr.joblib", force_download=False))
|
48 |
|
49 |
# criação de uma nova coluna
|
50 |
context = titulo + descricao
|
@@ -90,7 +90,7 @@ def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
|
|
90 |
return story_points
|
91 |
|
92 |
def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
|
93 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_neosp_linear.joblib", force_download=False))
|
94 |
# criação de uma nova coluna
|
95 |
context = titulo + descricao
|
96 |
d = {"context": [context]}
|
@@ -135,11 +135,11 @@ def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
|
|
135 |
return story_points
|
136 |
|
137 |
def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
|
138 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_tfidf_svr.joblib", force_download=False))
|
139 |
context = titulo + descricao
|
140 |
d = {"context_": [context]}
|
141 |
df = pd.DataFrame(data=d, columns=["context_"])
|
142 |
-
vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "vectorizer_tfidf.joblib", force_download=False))
|
143 |
X_vec = vectorizer.transform(df["context_"])
|
144 |
df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
|
145 |
X = df_vec
|
@@ -147,11 +147,11 @@ def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
|
|
147 |
return story_points
|
148 |
|
149 |
def calcula_TFIDF_Linear(titulo, descricao, nome_projeto):
|
150 |
-
model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_tfidf_linear.joblib", force_download=False))
|
151 |
context = titulo + descricao
|
152 |
d = {"context_": [context]}
|
153 |
df = pd.DataFrame(data=d, columns=["context_"])
|
154 |
-
vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "vectorizer_tfidf.joblib", force_download=False))
|
155 |
X_vec = vectorizer.transform(df["context_"])
|
156 |
df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
|
157 |
X = df_vec
|
|
|
31 |
context = titulo + descricao
|
32 |
d = {"context_": [context]}
|
33 |
df = pd.DataFrame(data=d, columns=["context_"])
|
34 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_mbr.joblib", force_download=False))
|
35 |
story_points_MbR = model.predict(df["context_"])
|
36 |
return story_points_MbR
|
37 |
|
|
|
39 |
context = titulo + descricao
|
40 |
d = {"context_": [context]}
|
41 |
df = pd.DataFrame(data=d, columns=["context_"])
|
42 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_median.joblib", force_download=False))
|
43 |
story_points_MbR = model.predict(df["context_"])
|
44 |
return story_points_MbR
|
45 |
|
46 |
def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
|
47 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_neosp_svr.joblib", force_download=False))
|
48 |
|
49 |
# criação de uma nova coluna
|
50 |
context = titulo + descricao
|
|
|
90 |
return story_points
|
91 |
|
92 |
def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
|
93 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_neosp_linear.joblib", force_download=False))
|
94 |
# criação de uma nova coluna
|
95 |
context = titulo + descricao
|
96 |
d = {"context": [context]}
|
|
|
135 |
return story_points
|
136 |
|
137 |
def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
|
138 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_tfidf_svr.joblib", force_download=False))
|
139 |
context = titulo + descricao
|
140 |
d = {"context_": [context]}
|
141 |
df = pd.DataFrame(data=d, columns=["context_"])
|
142 |
+
vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/vectorizer_tfidf.joblib", force_download=False))
|
143 |
X_vec = vectorizer.transform(df["context_"])
|
144 |
df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
|
145 |
X = df_vec
|
|
|
147 |
return story_points
|
148 |
|
149 |
def calcula_TFIDF_Linear(titulo, descricao, nome_projeto):
|
150 |
+
model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib", force_download=False))
|
151 |
context = titulo + descricao
|
152 |
d = {"context_": [context]}
|
153 |
df = pd.DataFrame(data=d, columns=["context_"])
|
154 |
+
vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/vectorizer_tfidf.joblib", force_download=False))
|
155 |
X_vec = vectorizer.transform(df["context_"])
|
156 |
df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
|
157 |
X = df_vec
|