giseldo commited on
Commit
ff6b0ed
·
1 Parent(s): a6e7f6b

ultima versao

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -31,7 +31,7 @@ def calcula_MbR(titulo, descricao, nome_projeto):
31
  context = titulo + descricao
32
  d = {"context_": [context]}
33
  df = pd.DataFrame(data=d, columns=["context_"])
34
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_mbr.joblib", force_download=False))
35
  story_points_MbR = model.predict(df["context_"])
36
  return story_points_MbR
37
 
@@ -39,12 +39,12 @@ def calcula_Median(titulo, descricao, nome_projeto):
39
  context = titulo + descricao
40
  d = {"context_": [context]}
41
  df = pd.DataFrame(data=d, columns=["context_"])
42
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_median.joblib", force_download=False))
43
  story_points_MbR = model.predict(df["context_"])
44
  return story_points_MbR
45
 
46
  def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
47
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_neosp_svr.joblib", force_download=False))
48
 
49
  # criação de uma nova coluna
50
  context = titulo + descricao
@@ -90,7 +90,7 @@ def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
90
  return story_points
91
 
92
  def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
93
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_neosp_linear.joblib", force_download=False))
94
  # criação de uma nova coluna
95
  context = titulo + descricao
96
  d = {"context": [context]}
@@ -135,11 +135,11 @@ def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
135
  return story_points
136
 
137
  def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
138
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_tfidf_svr.joblib", force_download=False))
139
  context = titulo + descricao
140
  d = {"context_": [context]}
141
  df = pd.DataFrame(data=d, columns=["context_"])
142
- vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "vectorizer_tfidf.joblib", force_download=False))
143
  X_vec = vectorizer.transform(df["context_"])
144
  df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
145
  X = df_vec
@@ -147,11 +147,11 @@ def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
147
  return story_points
148
 
149
  def calcula_TFIDF_Linear(titulo, descricao, nome_projeto):
150
- model = load(hf_hub_download("giseldo/model_effort_tawos", "model_tawos_aloy_tfidf_linear.joblib", force_download=False))
151
  context = titulo + descricao
152
  d = {"context_": [context]}
153
  df = pd.DataFrame(data=d, columns=["context_"])
154
- vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "vectorizer_tfidf.joblib", force_download=False))
155
  X_vec = vectorizer.transform(df["context_"])
156
  df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
157
  X = df_vec
 
31
  context = titulo + descricao
32
  d = {"context_": [context]}
33
  df = pd.DataFrame(data=d, columns=["context_"])
34
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_mbr.joblib", force_download=False))
35
  story_points_MbR = model.predict(df["context_"])
36
  return story_points_MbR
37
 
 
39
  context = titulo + descricao
40
  d = {"context_": [context]}
41
  df = pd.DataFrame(data=d, columns=["context_"])
42
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_median.joblib", force_download=False))
43
  story_points_MbR = model.predict(df["context_"])
44
  return story_points_MbR
45
 
46
  def calcula_NEOSP_SVR(titulo, descricao, nome_projeto):
47
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_neosp_svr.joblib", force_download=False))
48
 
49
  # criação de uma nova coluna
50
  context = titulo + descricao
 
90
  return story_points
91
 
92
  def calcula_NEOSP_Linear(titulo, descricao, nome_projeto):
93
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_neosp_linear.joblib", force_download=False))
94
  # criação de uma nova coluna
95
  context = titulo + descricao
96
  d = {"context": [context]}
 
135
  return story_points
136
 
137
  def calcula_TFIDF_SVR(titulo, descricao, nome_projeto):
138
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_tfidf_svr.joblib", force_download=False))
139
  context = titulo + descricao
140
  d = {"context_": [context]}
141
  df = pd.DataFrame(data=d, columns=["context_"])
142
+ vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/vectorizer_tfidf.joblib", force_download=False))
143
  X_vec = vectorizer.transform(df["context_"])
144
  df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
145
  X = df_vec
 
147
  return story_points
148
 
149
  def calcula_TFIDF_Linear(titulo, descricao, nome_projeto):
150
+ model = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib", force_download=False))
151
  context = titulo + descricao
152
  d = {"context_": [context]}
153
  df = pd.DataFrame(data=d, columns=["context_"])
154
+ vectorizer = load(hf_hub_download("giseldo/model_effort_tawos", "models/tawos/aloy/vectorizer_tfidf.joblib", force_download=False))
155
  X_vec = vectorizer.transform(df["context_"])
156
  df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())
157
  X = df_vec