Spaces:
Running
Running
File size: 11,454 Bytes
d6b3b9f 01942d8 88f768f d57b1dd 71788ef 34009a0 d57b1dd d6b3b9f 01c4e21 583defc d6b3b9f 71788ef d6b3b9f 88f768f 01942d8 583defc 01c4e21 88f768f 01c4e21 88f768f 01c4e21 88f768f 01942d8 27538a2 01942d8 88f768f 27538a2 1bf401f 88f768f 27538a2 1bf401f 27538a2 01c4e21 27538a2 583defc 01c4e21 583defc 01c4e21 583defc 01942d8 01c4e21 d57b1dd ea670d5 01c4e21 ea670d5 d57b1dd 71788ef d57b1dd 34009a0 d57b1dd 71788ef d57b1dd 583defc 34009a0 d57b1dd 01942d8 d6b3b9f 88f768f d6b3b9f d57b1dd 583defc d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 583defc 01c4e21 01942d8 ea670d5 01942d8 88f768f 01942d8 d57b1dd 01c4e21 01942d8 ea670d5 583defc 01c4e21 ea670d5 01942d8 d6b3b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import datasets
import huggingface_hub
import sys
import os
import time
from pathlib import Path
import json
import pandas as pd
from transformers.pipelines import TextClassificationPipeline
HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
theme = gr.themes.Soft(
primary_hue="green",
)
def check_model(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None, None
try:
from transformers import pipeline
ppl = pipeline(task=task, model=model_id)
return model_id, ppl
except Exception as e:
return model_id, e
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
try:
configs = datasets.get_dataset_config_names(dataset_id)
except Exception:
# Dataset may not exist
return None, dataset_config, dataset_split
if dataset_config not in configs:
# Need to choose dataset subset (config)
return dataset_id, configs, dataset_split
ds = datasets.load_dataset(dataset_id, dataset_config)
if isinstance(ds, datasets.DatasetDict):
# Need to choose dataset split
if dataset_split not in ds.keys():
return dataset_id, None, list(ds.keys())
elif not isinstance(ds, datasets.Dataset):
# Unknown type
return dataset_id, None, None
return dataset_id, dataset_config, dataset_split
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
for model_label in id2label_mapping.keys():
if model_label.upper() == label.upper():
return model_label, label
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
for feature in dataset_features.values():
if not isinstance(feature, datasets.ClassLabel):
continue
if len(feature.names) != len(id2label_mapping.keys()):
continue
# Try to match labels
for label in feature.names:
if label in id2label_mapping.keys():
model_label = label
else:
# Try to find case unsensative
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
id2label_mapping[model_label] = label
return id2label_mapping
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
# Validate model
m_id, ppl = check_model(model_id=model_id)
if m_id is None:
gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.')
return (
dataset_config, dataset_split,
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=True), # Column mapping
)
if isinstance(ppl, Exception):
gr.Warning(f'Failed to load "{model_id} model": {ppl}')
return (
dataset_config, dataset_split,
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=True), # Column mapping
)
# Validate dataset
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)
dataset_ok = False
if d_id is None:
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
elif isinstance(config, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
config = gr.update(choices=config, value=config[0])
elif isinstance(split, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
split = gr.update(choices=split, value=split[0])
else:
dataset_ok = True
if not dataset_ok:
return (
config, split,
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=True), # Column mapping
)
# TODO: Validate column mapping by running once
prediction_result = {}
id2label_df = None
if isinstance(ppl, TextClassificationPipeline):
try:
column_mapping = json.loads(column_mapping)
except Exception:
column_mapping = {}
# Retrieve all labels
id2label_mapping = {}
try:
results = ppl({"text": "Test"}, top_k=None)
prediction_result = {
result["label"]: result["score"] for result in results
}
except Exception as e:
# Pipeline is not executable
pass
# We assume dataset is ok here
ds = datasets.load_dataset(d_id, config)[split]
try:
id2label = ppl.model.config.id2label
id2label_mapping = text_classification_map_model_and_dataset_labels(ppl.model.config.id2label, ds.features)
id2label_df = pd.DataFrame({
"ID": [i for i in id2label.keys()],
"Model labels": [id2label[label] for label in id2label.keys()],
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
})
if "label" not in column_mapping.keys():
column_mapping["label"] = {
i: id2label_mapping[id2label[i]] for i in id2label.keys()
}
except AttributeError:
# Dataset does not have features
pass
column_mapping = json.dumps(column_mapping, indent=2)
del ppl
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
return (
config, split,
gr.update(interactive=True), # Submit button
gr.update(value=prediction_result, visible=True), # Model prediction preview
gr.update(value=id2label_df, visible=True), # Label mapping preview
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
)
def try_submit(m_id, d_id, config, split, local):
if local:
if "cicd" not in sys.path:
sys.path.append("cicd")
from giskard_cicd.loaders import HuggingFaceLoader
from giskard_cicd.pipeline.runner import PipelineRunner
from automation import create_discussion_detailed
supported_loaders = {
"huggingface": HuggingFaceLoader(),
}
runner = PipelineRunner(loaders=supported_loaders)
runner_kwargs = {
"loader_id": "huggingface",
"model": m_id,
"dataset": d_id,
"scan_config": None,
"dataset_split": split,
"dataset_config": config,
}
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
start = time.time()
print(f"Start local evaluation on {eval_str}")
report = runner.run(**runner_kwargs)
# TODO: Publish it with given repo id/model id
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID) and os.environ.get(HF_WRITE_TOKEN):
rendered_report = report.to_markdown(template="github")
repo = os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID)
create_discussion_detailed(repo, m_id, d_id, config, split, os.environ.get(HF_WRITE_TOKEN), rendered_report)
# Cache locally
rendered_report = report.to_html()
output_dir = Path(f"output/{m_id}/{d_id}/{config}/{split}/")
output_dir.mkdir(parents=True, exist_ok=True)
with open(output_dir / "report.html", "w") as f:
print(f'Writing to {output_dir / "report.html"}')
f.write(rendered_report)
print(f"Finished local evaluation on {eval_str}: {time.time() - start:.2f}s")
with gr.Blocks(theme=theme) as iface:
with gr.Row():
with gr.Column():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
)
# TODO: Add supported model pairs: Text Classification - text-classification
model_type = gr.Dropdown(
label="Hugging Face model type",
choices=[
("Auto-detect", 0),
("Text Classification", 1),
],
value=0,
)
run_local = gr.Checkbox(value=True, label="Run in this Space")
example_labels = gr.Label(label='Model pipeline test prediction result', visible=False)
with gr.Column():
dataset_id_input = gr.Textbox(
label="Hugging Face dataset id",
placeholder="tweet_eval",
)
dataset_config_input = gr.Dropdown(
label="Hugging Face dataset subset",
choices=[
"default",
],
allow_custom_value=True,
value="default",
)
dataset_split_input = gr.Dropdown(
label="Hugging Face dataset split",
choices=[
"test",
],
allow_custom_value=True,
value="test",
)
id2label_mapping_dataframe = gr.DataFrame(visible=False)
with gr.Row():
column_mapping_input = gr.Textbox(
value="",
lines=5,
label="Column mapping",
placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n"
'{\n'
' "text": "context",\n'
' "label": {0: "Positive", 1: "Negative"}\n'
'}',
)
with gr.Row():
validate_btn = gr.Button("Validate model and dataset", variant="primary")
run_btn = gr.Button(
"Submit evaluation task",
variant="primary",
interactive=False,
)
validate_btn.click(
try_validate,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
column_mapping_input,
],
outputs=[
dataset_config_input,
dataset_split_input,
run_btn,
example_labels,
id2label_mapping_dataframe,
column_mapping_input,
],
)
run_btn.click(
try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
],
)
iface.queue(max_size=20)
iface.launch()
|