Spaces:
Running
Running
File size: 6,148 Bytes
d6b3b9f 01942d8 88f768f d57b1dd 71788ef d57b1dd d6b3b9f 71788ef d6b3b9f 88f768f 01942d8 d57b1dd 88f768f 01942d8 27538a2 01942d8 88f768f 27538a2 1bf401f 88f768f 27538a2 1bf401f 27538a2 01942d8 d57b1dd 71788ef d57b1dd 71788ef d57b1dd 01942d8 d6b3b9f 88f768f d6b3b9f d57b1dd d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 01942d8 d6b3b9f 01942d8 88f768f 01942d8 88f768f 01942d8 d57b1dd 01942d8 d6b3b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import datasets
import huggingface_hub
import sys
import os
from pathlib import Path
HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
theme = gr.themes.Soft(
primary_hue="green",
)
def check_model(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None, None
try:
from transformers import pipeline
ppl = pipeline(task=task, model=model_id)
return model_id, ppl
except Exception as e:
return model_id, e
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
try:
configs = datasets.get_dataset_config_names(dataset_id)
except Exception:
# Dataset may not exist
return None, dataset_config, dataset_split
if dataset_config not in configs:
# Need to choose dataset subset (config)
return dataset_id, configs, dataset_split
ds = datasets.load_dataset(dataset_id, dataset_config)
if isinstance(ds, datasets.DatasetDict):
# Need to choose dataset split
if dataset_split not in ds.keys():
return dataset_id, None, list(ds.keys())
elif not isinstance(ds, datasets.Dataset):
# Unknown type
return dataset_id, None, None
return dataset_id, dataset_config, dataset_split
def try_submit(model_id, dataset_id, dataset_config, dataset_split, local):
# Validate model
m_id, ppl = check_model(model_id=model_id)
if m_id is None:
gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.')
return dataset_config, dataset_split
if isinstance(ppl, Exception):
gr.Warning(f'Failed to load "{model_id} model": {ppl}')
return dataset_config, dataset_split
# Validate dataset
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)
dataset_ok = False
if d_id is None:
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
elif isinstance(config, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
config = gr.update(choices=config, value=config[0])
elif isinstance(split, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
split = gr.update(choices=split, value=split[0])
else:
dataset_ok = True
if not dataset_ok:
return config, split
# TODO: Validate column mapping by running once
del ppl
if local:
if "cicd" not in sys.path:
sys.path.append("cicd")
from giskard_cicd.loaders import HuggingFaceLoader
from giskard_cicd.pipeline.runner import PipelineRunner
from automation import create_discussion_detailed
supported_loaders = {
"huggingface": HuggingFaceLoader(),
}
runner = PipelineRunner(loaders=supported_loaders)
runner_kwargs = {
"loader_id": "huggingface",
"model": m_id,
"dataset": d_id,
"scan_config": None,
"dataset_split": split,
"dataset_config": config,
}
report = runner.run(**runner_kwargs)
# TODO: Publish it with given repo id/model id
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID) and os.environ.get(HF_WRITE_TOKEN):
rendered_report = report.to_markdown(template="github")
repo = os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID)
create_discussion_detailed(repo, m_id, d_id, config, split, os.environ.get(HF_WRITE_TOKEN), rendered_report)
# Cache locally
rendered_report = report.to_html()
output_dir = Path(f"output/{m_id}/{d_id}/{config}/{split}/")
output_dir.mkdir(parents=True, exist_ok=True)
with open(output_dir / "report.html", "w") as f:
print(f'Writing to {output_dir / "report.html"}')
f.write(rendered_report)
return config, split
with gr.Blocks(theme=theme) as iface:
with gr.Row():
with gr.Column():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
)
# TODO: Add supported model pairs: Text Classification - text-classification
model_type = gr.Dropdown(
label="Hugging Face model type",
choices=[
("Auto-detect", 0),
("Text Classification", 1),
],
value=0,
)
run_local = gr.Checkbox(value=True, label="Run in this Space")
with gr.Column():
dataset_id_input = gr.Textbox(
label="Hugging Face dataset id",
placeholder="tweet_eval",
)
dataset_config_input = gr.Dropdown(
label="Hugging Face dataset subset",
choices=[
"default",
],
allow_custom_value=True,
value="default",
)
dataset_split_input = gr.Dropdown(
label="Hugging Face dataset split",
choices=[
"test",
],
allow_custom_value=True,
value="test",
)
with gr.Row():
run_btn = gr.Button("Validate and submit evaluation task", variant="primary")
run_btn.click(
try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
],
outputs=[
dataset_config_input,
dataset_split_input
],
)
iface.queue(max_size=20)
iface.launch()
|