Spaces:
Sleeping
Sleeping
Commit
·
0c7d7d0
1
Parent(s):
1aa43b4
GSK-2362-improve-uiux-for-hfspace (#7)
Browse files- updated version of ui (9e212ded38fae09473a8aca5e1a861e261e4ebb3)
- Add welcome message at the top (9037bf70daec0ec9985ce71e5a5938ed49c5f85d)
- add pre-check for column mapping values (536b2a2019f4c1fa278a04c10199e04acb58c3aa)
- polish up and add more information (ac0eaffe10ec54745aa4dc0899522e2dcdf91b4c)
Co-authored-by: zcy <[email protected]>
- app.py +99 -93
- text_classification.py +29 -18
app.py
CHANGED
@@ -10,7 +10,7 @@ import json
|
|
10 |
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
-
from text_classification import text_classification_fix_column_mapping
|
14 |
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
@@ -59,26 +59,27 @@ def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
|
59 |
return dataset_id, None, None
|
60 |
return dataset_id, dataset_config, dataset_split
|
61 |
|
62 |
-
def try_validate(
|
63 |
# Validate model
|
64 |
-
m_id, ppl = check_model(model_id=model_id)
|
65 |
if m_id is None:
|
66 |
-
gr.Warning(
|
67 |
return (
|
68 |
-
dataset_config, dataset_split,
|
69 |
gr.update(interactive=False), # Submit button
|
|
|
|
|
|
|
70 |
gr.update(visible=False), # Model prediction preview
|
71 |
gr.update(visible=False), # Label mapping preview
|
72 |
-
gr.update(visible=True), # Column mapping
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
-
gr.Warning(f'Failed to load
|
76 |
return (
|
77 |
-
dataset_config, dataset_split,
|
78 |
gr.update(interactive=False), # Submit button
|
|
|
|
|
|
|
79 |
gr.update(visible=False), # Model prediction preview
|
80 |
gr.update(visible=False), # Label mapping preview
|
81 |
-
gr.update(visible=True), # Column mapping
|
82 |
)
|
83 |
|
84 |
# Validate dataset
|
@@ -98,11 +99,13 @@ def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_map
|
|
98 |
|
99 |
if not dataset_ok:
|
100 |
return (
|
101 |
-
config, split,
|
102 |
gr.update(interactive=False), # Submit button
|
|
|
|
|
|
|
103 |
gr.update(visible=False), # Model prediction preview
|
104 |
gr.update(visible=False), # Label mapping preview
|
105 |
-
gr.update(visible=True), # Column mapping
|
106 |
)
|
107 |
|
108 |
# TODO: Validate column mapping by running once
|
@@ -110,45 +113,48 @@ def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_map
|
|
110 |
id2label_df = None
|
111 |
if isinstance(ppl, TextClassificationPipeline):
|
112 |
try:
|
|
|
113 |
column_mapping = json.loads(column_mapping)
|
114 |
except Exception:
|
115 |
column_mapping = {}
|
116 |
|
117 |
-
column_mapping, prediction_result, id2label_df = \
|
118 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
119 |
|
120 |
column_mapping = json.dumps(column_mapping, indent=2)
|
121 |
|
122 |
-
del ppl
|
123 |
-
|
124 |
if prediction_result is None:
|
125 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
126 |
return (
|
127 |
-
config, split,
|
128 |
gr.update(interactive=False), # Submit button
|
|
|
|
|
|
|
129 |
gr.update(visible=False), # Model prediction preview
|
130 |
gr.update(visible=False), # Label mapping preview
|
131 |
-
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
132 |
)
|
133 |
elif id2label_df is None:
|
134 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
135 |
return (
|
136 |
-
config, split,
|
137 |
gr.update(interactive=False), # Submit button
|
|
|
|
|
|
|
138 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
139 |
gr.update(visible=False), # Label mapping preview
|
140 |
-
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
141 |
)
|
142 |
|
143 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
144 |
|
145 |
return (
|
|
|
146 |
gr.update(visible=False), # Loading row
|
147 |
gr.update(visible=True), # Preview row
|
148 |
-
gr.update(
|
149 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
150 |
-
gr.update(value=id2label_df, visible=True), # Label mapping preview
|
151 |
-
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
152 |
)
|
153 |
|
154 |
|
@@ -200,36 +206,56 @@ def try_submit(m_id, d_id, config, split, column_mappings, local):
|
|
200 |
|
201 |
with gr.Blocks(theme=theme) as iface:
|
202 |
with gr.Tab("Text Classification"):
|
203 |
-
global_ds_id = gr.State('ds')
|
204 |
-
|
205 |
def check_dataset_and_get_config(dataset_id):
|
206 |
-
global_ds_id.value = dataset_id
|
207 |
try:
|
208 |
configs = datasets.get_dataset_config_names(dataset_id)
|
209 |
-
print(configs)
|
210 |
return gr.Dropdown(configs, value=configs[0], visible=True)
|
211 |
except Exception:
|
212 |
# Dataset may not exist
|
213 |
pass
|
214 |
|
215 |
-
def check_dataset_and_get_split(
|
216 |
-
print('choice: ',choice, global_ds_id.value)
|
217 |
try:
|
218 |
-
splits = list(datasets.load_dataset(
|
219 |
-
print('splits: ',splits)
|
220 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
221 |
except Exception as e:
|
222 |
# Dataset may not exist
|
223 |
-
|
224 |
pass
|
225 |
|
226 |
-
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split):
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
with gr.Row():
|
234 |
model_id_input = gr.Textbox(
|
235 |
label="Hugging Face model id",
|
@@ -245,22 +271,10 @@ with gr.Blocks(theme=theme) as iface:
|
|
245 |
dataset_split_input = gr.Dropdown(['default'], value=['default'], label='Dataset Split', visible=False)
|
246 |
|
247 |
dataset_id_input.change(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
248 |
-
dataset_config_input.change(
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
model_id_input.change(gate_validate_btn,
|
253 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
254 |
-
outputs=[validate_btn])
|
255 |
-
dataset_id_input.change(gate_validate_btn,
|
256 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
257 |
-
outputs=[validate_btn])
|
258 |
-
dataset_config_input.change(gate_validate_btn,
|
259 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
260 |
-
outputs=[validate_btn])
|
261 |
-
dataset_split_input.change(gate_validate_btn,
|
262 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
263 |
-
outputs=[validate_btn])
|
264 |
|
265 |
with gr.Row(visible=True) as loading_row:
|
266 |
gr.Markdown('''
|
@@ -270,51 +284,45 @@ with gr.Blocks(theme=theme) as iface:
|
|
270 |
''')
|
271 |
|
272 |
with gr.Row(visible=False) as preview_row:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
with gr.Accordion("Advance", open=False):
|
284 |
-
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
285 |
-
column_mapping_input = gr.Textbox(
|
286 |
-
value="",
|
287 |
-
lines=6,
|
288 |
-
label="Column mapping",
|
289 |
-
placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n"
|
290 |
-
'{\n'
|
291 |
-
' "text": "context",\n'
|
292 |
-
' "label": {0: "Positive", 1: "Negative"}\n'
|
293 |
-
'}',
|
294 |
-
)
|
295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
run_btn = gr.Button(
|
297 |
"Get Evaluation Result",
|
298 |
variant="primary",
|
299 |
interactive=False,
|
|
|
300 |
)
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
)
|
318 |
|
319 |
run_btn.click(
|
320 |
try_submit,
|
@@ -323,8 +331,6 @@ with gr.Blocks(theme=theme) as iface:
|
|
323 |
dataset_id_input,
|
324 |
dataset_config_input,
|
325 |
dataset_split_input,
|
326 |
-
column_mapping_input,
|
327 |
-
run_local,
|
328 |
],
|
329 |
outputs=[
|
330 |
run_btn,
|
|
|
10 |
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
+
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
|
|
59 |
return dataset_id, None, None
|
60 |
return dataset_id, dataset_config, dataset_split
|
61 |
|
62 |
+
def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'):
|
63 |
# Validate model
|
|
|
64 |
if m_id is None:
|
65 |
+
gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.')
|
66 |
return (
|
|
|
67 |
gr.update(interactive=False), # Submit button
|
68 |
+
gr.update(visible=True), # Loading row
|
69 |
+
gr.update(visible=False), # Preview row
|
70 |
+
gr.update(visible=False), # Model prediction input
|
71 |
gr.update(visible=False), # Model prediction preview
|
72 |
gr.update(visible=False), # Label mapping preview
|
|
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
+
gr.Warning(f'Failed to load model": {ppl}')
|
76 |
return (
|
|
|
77 |
gr.update(interactive=False), # Submit button
|
78 |
+
gr.update(visible=True), # Loading row
|
79 |
+
gr.update(visible=False), # Preview row
|
80 |
+
gr.update(visible=False), # Model prediction input
|
81 |
gr.update(visible=False), # Model prediction preview
|
82 |
gr.update(visible=False), # Label mapping preview
|
|
|
83 |
)
|
84 |
|
85 |
# Validate dataset
|
|
|
99 |
|
100 |
if not dataset_ok:
|
101 |
return (
|
|
|
102 |
gr.update(interactive=False), # Submit button
|
103 |
+
gr.update(visible=True), # Loading row
|
104 |
+
gr.update(visible=False), # Preview row
|
105 |
+
gr.update(visible=False), # Model prediction input
|
106 |
gr.update(visible=False), # Model prediction preview
|
107 |
gr.update(visible=False), # Label mapping preview
|
108 |
+
# gr.update(visible=True), # Column mapping
|
109 |
)
|
110 |
|
111 |
# TODO: Validate column mapping by running once
|
|
|
113 |
id2label_df = None
|
114 |
if isinstance(ppl, TextClassificationPipeline):
|
115 |
try:
|
116 |
+
print('validating phase, ', column_mapping)
|
117 |
column_mapping = json.loads(column_mapping)
|
118 |
except Exception:
|
119 |
column_mapping = {}
|
120 |
|
121 |
+
column_mapping, prediction_input, prediction_result, id2label_df = \
|
122 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
123 |
|
124 |
column_mapping = json.dumps(column_mapping, indent=2)
|
125 |
|
|
|
|
|
126 |
if prediction_result is None:
|
127 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
128 |
return (
|
|
|
129 |
gr.update(interactive=False), # Submit button
|
130 |
+
gr.update(visible=True), # Loading row
|
131 |
+
gr.update(visible=False), # Preview row
|
132 |
+
gr.update(visible=False), # Model prediction input
|
133 |
gr.update(visible=False), # Model prediction preview
|
134 |
gr.update(visible=False), # Label mapping preview
|
135 |
+
# gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
136 |
)
|
137 |
elif id2label_df is None:
|
138 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
139 |
return (
|
|
|
140 |
gr.update(interactive=False), # Submit button
|
141 |
+
gr.update(visible=False), # Loading row
|
142 |
+
gr.update(visible=True), # Preview row
|
143 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
144 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
145 |
gr.update(visible=False), # Label mapping preview
|
146 |
+
# gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
147 |
)
|
148 |
|
149 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
150 |
|
151 |
return (
|
152 |
+
gr.update(interactive=True), # Submit button
|
153 |
gr.update(visible=False), # Loading row
|
154 |
gr.update(visible=True), # Preview row
|
155 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
156 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
157 |
+
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
|
|
158 |
)
|
159 |
|
160 |
|
|
|
206 |
|
207 |
with gr.Blocks(theme=theme) as iface:
|
208 |
with gr.Tab("Text Classification"):
|
|
|
|
|
209 |
def check_dataset_and_get_config(dataset_id):
|
|
|
210 |
try:
|
211 |
configs = datasets.get_dataset_config_names(dataset_id)
|
|
|
212 |
return gr.Dropdown(configs, value=configs[0], visible=True)
|
213 |
except Exception:
|
214 |
# Dataset may not exist
|
215 |
pass
|
216 |
|
217 |
+
def check_dataset_and_get_split(dataset_config, dataset_id):
|
|
|
218 |
try:
|
219 |
+
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
|
|
220 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
221 |
except Exception as e:
|
222 |
# Dataset may not exist
|
223 |
+
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
224 |
pass
|
225 |
|
226 |
+
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None):
|
227 |
+
column_mapping = '{}'
|
228 |
+
m_id, ppl = check_model(model_id=model_id)
|
229 |
+
|
230 |
+
if id2label_mapping_dataframe is not None:
|
231 |
+
column_mapping = id2label_mapping_dataframe.to_json(orient="split")
|
232 |
+
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
233 |
+
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
234 |
+
return (gr.update(interactive=False),
|
235 |
+
gr.update(),
|
236 |
+
gr.update(),
|
237 |
+
gr.update(),
|
238 |
+
gr.update(),
|
239 |
+
gr.update())
|
240 |
else:
|
241 |
+
if model_id and dataset_id and dataset_config and dataset_split:
|
242 |
+
return try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
|
243 |
+
else:
|
244 |
+
del ppl
|
245 |
+
|
246 |
+
return (gr.update(interactive=False),
|
247 |
+
gr.update(visible=True),
|
248 |
+
gr.update(visible=False),
|
249 |
+
gr.update(visible=False),
|
250 |
+
gr.update(visible=False),
|
251 |
+
gr.update(visible=False))
|
252 |
+
with gr.Row():
|
253 |
+
gr.Markdown('''
|
254 |
+
<h1 style="text-align: center;">
|
255 |
+
Giskard Evaluator
|
256 |
+
</h1>
|
257 |
+
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
258 |
+
''')
|
259 |
with gr.Row():
|
260 |
model_id_input = gr.Textbox(
|
261 |
label="Hugging Face model id",
|
|
|
271 |
dataset_split_input = gr.Dropdown(['default'], value=['default'], label='Dataset Split', visible=False)
|
272 |
|
273 |
dataset_id_input.change(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
274 |
+
dataset_config_input.change(
|
275 |
+
check_dataset_and_get_split,
|
276 |
+
inputs=[dataset_config_input, dataset_id_input],
|
277 |
+
outputs=[dataset_split_input])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
with gr.Row(visible=True) as loading_row:
|
280 |
gr.Markdown('''
|
|
|
284 |
''')
|
285 |
|
286 |
with gr.Row(visible=False) as preview_row:
|
287 |
+
gr.Markdown('''
|
288 |
+
<h1 style="text-align: center;">
|
289 |
+
Confirm Label Details
|
290 |
+
</h1>
|
291 |
+
Base on your model and dataset, we inferred this label mapping. **If the mapping is incorrect, please modify it in the table below.**
|
292 |
+
''')
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
with gr.Row():
|
298 |
+
example_input = gr.Markdown('Sample Input: ', visible=False)
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
example_labels = gr.Label(label='Model Prediction Sample', visible=False)
|
302 |
+
|
303 |
+
|
304 |
run_btn = gr.Button(
|
305 |
"Get Evaluation Result",
|
306 |
variant="primary",
|
307 |
interactive=False,
|
308 |
+
size="lg",
|
309 |
)
|
310 |
+
|
311 |
+
model_id_input.change(gate_validate_btn,
|
312 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
313 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
314 |
+
dataset_id_input.change(gate_validate_btn,
|
315 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
316 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
317 |
+
dataset_config_input.change(gate_validate_btn,
|
318 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
319 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
320 |
+
dataset_split_input.change(gate_validate_btn,
|
321 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
322 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
323 |
+
id2label_mapping_dataframe.input(gate_validate_btn,
|
324 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe],
|
325 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
|
|
326 |
|
327 |
run_btn.click(
|
328 |
try_submit,
|
|
|
331 |
dataset_id_input,
|
332 |
dataset_config_input,
|
333 |
dataset_split_input,
|
|
|
|
|
334 |
],
|
335 |
outputs=[
|
336 |
run_btn,
|
text_classification.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import datasets
|
2 |
-
|
3 |
import logging
|
4 |
-
|
5 |
import pandas as pd
|
6 |
|
7 |
|
@@ -36,6 +35,20 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
36 |
return id2label_mapping, dataset_labels
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
40 |
# We assume dataset is ok here
|
41 |
ds = datasets.load_dataset(d_id, config)[split]
|
@@ -72,10 +85,12 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
72 |
id2label_mapping = {}
|
73 |
id2label = ppl.model.config.id2label
|
74 |
label2id = {v: k for k, v in id2label.items()}
|
|
|
75 |
prediction_result = None
|
76 |
try:
|
77 |
# Use the first item to test prediction
|
78 |
-
|
|
|
79 |
prediction_result = {
|
80 |
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
81 |
}
|
@@ -85,33 +100,29 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
85 |
|
86 |
# Infer labels
|
87 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
88 |
-
if "
|
89 |
-
if
|
90 |
-
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
91 |
-
return column_mapping, prediction_result, None
|
92 |
-
|
93 |
-
if isinstance(column_mapping["label"], dict):
|
94 |
# Use the column mapping passed by user
|
95 |
-
for
|
96 |
-
id2label_mapping[model_label] =
|
97 |
elif None in id2label_mapping.values():
|
98 |
column_mapping["label"] = {
|
99 |
i: None for i in id2label.keys()
|
100 |
}
|
101 |
return column_mapping, prediction_result, None
|
102 |
|
103 |
-
|
104 |
-
|
105 |
}
|
106 |
id2label_df = pd.DataFrame({
|
107 |
-
"
|
108 |
-
"Labels": dataset_labels,
|
109 |
-
"Labels in original model": [f"{id2label_mapping[label]}({label2id[id2label_mapping[label]]})" for label in dataset_labels],
|
110 |
})
|
111 |
-
|
|
|
112 |
# Column mapping should contain original model labels
|
113 |
column_mapping["label"] = {
|
114 |
str(i): id2label_mapping[label] for i, label in zip(id2label.keys(), dataset_labels)
|
115 |
}
|
116 |
|
117 |
-
return column_mapping, prediction_result, id2label_df
|
|
|
1 |
import datasets
|
|
|
2 |
import logging
|
3 |
+
import json
|
4 |
import pandas as pd
|
5 |
|
6 |
|
|
|
35 |
return id2label_mapping, dataset_labels
|
36 |
|
37 |
|
38 |
+
def check_column_mapping_keys_validity(column_mapping, ppl):
|
39 |
+
# get the element in all the list elements
|
40 |
+
column_mapping = json.loads(column_mapping)
|
41 |
+
if "data" not in column_mapping.keys():
|
42 |
+
return True
|
43 |
+
user_labels = set([pair[0] for pair in column_mapping["data"]])
|
44 |
+
model_labels = set([pair[1] for pair in column_mapping["data"]])
|
45 |
+
|
46 |
+
id2label = ppl.model.config.id2label
|
47 |
+
original_labels = set(id2label.values())
|
48 |
+
|
49 |
+
return user_labels == model_labels == original_labels
|
50 |
+
|
51 |
+
|
52 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
53 |
# We assume dataset is ok here
|
54 |
ds = datasets.load_dataset(d_id, config)[split]
|
|
|
85 |
id2label_mapping = {}
|
86 |
id2label = ppl.model.config.id2label
|
87 |
label2id = {v: k for k, v in id2label.items()}
|
88 |
+
prediction_input = None
|
89 |
prediction_result = None
|
90 |
try:
|
91 |
# Use the first item to test prediction
|
92 |
+
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
93 |
+
results = ppl({"text": prediction_input}, top_k=None)
|
94 |
prediction_result = {
|
95 |
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
96 |
}
|
|
|
100 |
|
101 |
# Infer labels
|
102 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
103 |
+
if "data" in column_mapping.keys():
|
104 |
+
if isinstance(column_mapping["data"], list):
|
|
|
|
|
|
|
|
|
105 |
# Use the column mapping passed by user
|
106 |
+
for user_label, model_label in column_mapping["data"]:
|
107 |
+
id2label_mapping[model_label] = user_label
|
108 |
elif None in id2label_mapping.values():
|
109 |
column_mapping["label"] = {
|
110 |
i: None for i in id2label.keys()
|
111 |
}
|
112 |
return column_mapping, prediction_result, None
|
113 |
|
114 |
+
prediction_result = {
|
115 |
+
f'[{label2id[result["label"]]}]{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
116 |
}
|
117 |
id2label_df = pd.DataFrame({
|
118 |
+
"Dataset Labels": dataset_labels,
|
119 |
+
"Model Prediction Labels": [id2label_mapping[label] for label in dataset_labels],
|
|
|
120 |
})
|
121 |
+
|
122 |
+
if "data" not in column_mapping.keys():
|
123 |
# Column mapping should contain original model labels
|
124 |
column_mapping["label"] = {
|
125 |
str(i): id2label_mapping[label] for i, label in zip(id2label.keys(), dataset_labels)
|
126 |
}
|
127 |
|
128 |
+
return column_mapping, prediction_input, prediction_result, id2label_df
|