Spaces:
Sleeping
Sleeping
show loading time when inference api request out of time (#55)
Browse files- handle inference api error; fix not text dataset columns (201d15624bcdeec74b8095fe5fb7e40d44ef85e3)
- cast float to int (6314bb550c6d82730a3bf3d225df782e21a4b98d)
- fix f string (d0be1568e2d52610d30b619ba7f8b11bbc852d85)
- handle hf api response with custom class (6eb580200cb862ad44723cff8370883ce03c9be9)
- update config yaml (98175fe87a123b3f2e124d68da46beff34a94957)
- update config yaml (63a19f026fbece9ce40eb4af359a3a486d2ad56b)
Co-authored-by: zcy <[email protected]>
- app_text_classification.py +5 -1
- config.yaml +3 -1
- text_classification.py +35 -18
- text_classification_ui_helpers.py +27 -7
app_text_classification.py
CHANGED
@@ -128,7 +128,11 @@ def get_demo():
|
|
128 |
fn=get_related_datasets_from_leaderboard,
|
129 |
inputs=[model_id_input],
|
130 |
outputs=[dataset_id_input],
|
131 |
-
).then(
|
|
|
|
|
|
|
|
|
132 |
|
133 |
gr.on(
|
134 |
triggers=[dataset_id_input.input],
|
|
|
128 |
fn=get_related_datasets_from_leaderboard,
|
129 |
inputs=[model_id_input],
|
130 |
outputs=[dataset_id_input],
|
131 |
+
).then(
|
132 |
+
fn=check_dataset,
|
133 |
+
inputs=[dataset_id_input],
|
134 |
+
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
135 |
+
)
|
136 |
|
137 |
gr.on(
|
138 |
triggers=[dataset_id_input.input],
|
config.yaml
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
configuration:
|
2 |
ethical_bias:
|
3 |
-
threshold: 0.
|
|
|
|
|
4 |
detectors:
|
5 |
- ethical_bias
|
6 |
- text_perturbation
|
|
|
1 |
configuration:
|
2 |
ethical_bias:
|
3 |
+
threshold: 0.05
|
4 |
+
performance:
|
5 |
+
alpha: 0.05
|
6 |
detectors:
|
7 |
- ethical_bias
|
8 |
- text_perturbation
|
text_classification.py
CHANGED
@@ -7,12 +7,16 @@ import pandas as pd
|
|
7 |
from transformers import pipeline
|
8 |
import requests
|
9 |
import os
|
10 |
-
import time
|
11 |
|
|
|
12 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
13 |
|
14 |
logger = logging.getLogger(__file__)
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def get_labels_and_features_from_dataset(ds):
|
18 |
try:
|
@@ -76,19 +80,18 @@ def hf_inference_api(model_id, hf_token, payload):
|
|
76 |
)
|
77 |
url = f"{hf_inference_api_endpoint}/models/{model_id}"
|
78 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
time.sleep(2)
|
92 |
|
93 |
def check_model_pipeline(model_id):
|
94 |
try:
|
@@ -262,6 +265,12 @@ def check_dataset_features_validity(d_id, config, split):
|
|
262 |
|
263 |
return df, dataset_features
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
267 |
# get a sample prediction from the model on the dataset
|
@@ -272,13 +281,21 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
272 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
273 |
if "text" not in ds.features.keys():
|
274 |
# Dataset does not have text column
|
275 |
-
prediction_input = ds[0][
|
276 |
else:
|
277 |
prediction_input = ds[0]["text"]
|
278 |
-
|
279 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
280 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
281 |
results = hf_inference_api(model_id, hf_token, payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
while isinstance(results, list):
|
283 |
if isinstance(results[0], dict):
|
284 |
break
|
@@ -287,8 +304,8 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
287 |
f'{result["label"]}': result["score"] for result in results
|
288 |
}
|
289 |
except Exception as e:
|
290 |
-
#
|
291 |
-
logger.
|
292 |
return prediction_input, None
|
293 |
|
294 |
return prediction_input, prediction_result
|
|
|
7 |
from transformers import pipeline
|
8 |
import requests
|
9 |
import os
|
|
|
10 |
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
13 |
|
14 |
logger = logging.getLogger(__file__)
|
15 |
|
16 |
+
class HuggingFaceInferenceAPIResponse:
|
17 |
+
def __init__(self, message):
|
18 |
+
self.message = message
|
19 |
+
|
20 |
|
21 |
def get_labels_and_features_from_dataset(ds):
|
22 |
try:
|
|
|
80 |
)
|
81 |
url = f"{hf_inference_api_endpoint}/models/{model_id}"
|
82 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
83 |
+
response = requests.post(url, headers=headers, json=payload)
|
84 |
+
if not hasattr(response, "status_code") or response.status_code != 200:
|
85 |
+
logger.warning(f"Request to inference API returns {response}")
|
86 |
+
try:
|
87 |
+
return response.json()
|
88 |
+
except Exception:
|
89 |
+
return {"error": response.content}
|
90 |
+
|
91 |
+
def preload_hf_inference_api(model_id):
|
92 |
+
payload = {"inputs": "This is a test", "options": {"use_cache": True, }}
|
93 |
+
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
94 |
+
hf_inference_api(model_id, hf_token, payload)
|
|
|
95 |
|
96 |
def check_model_pipeline(model_id):
|
97 |
try:
|
|
|
265 |
|
266 |
return df, dataset_features
|
267 |
|
268 |
+
def select_the_first_string_column(ds):
|
269 |
+
for feature in ds.features.keys():
|
270 |
+
if isinstance(ds[0][feature], str):
|
271 |
+
return feature
|
272 |
+
return None
|
273 |
+
|
274 |
|
275 |
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
276 |
# get a sample prediction from the model on the dataset
|
|
|
281 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
282 |
if "text" not in ds.features.keys():
|
283 |
# Dataset does not have text column
|
284 |
+
prediction_input = ds[0][select_the_first_string_column(ds)]
|
285 |
else:
|
286 |
prediction_input = ds[0]["text"]
|
287 |
+
|
288 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
289 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
290 |
results = hf_inference_api(model_id, hf_token, payload)
|
291 |
+
|
292 |
+
if isinstance(results, dict) and "error" in results.keys():
|
293 |
+
if "estimated_time" in results.keys():
|
294 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
295 |
+
f"Estimated time: {int(results['estimated_time'])}s. Please try again later.")
|
296 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
297 |
+
f"Inference Error: {results['error']}.")
|
298 |
+
|
299 |
while isinstance(results, list):
|
300 |
if isinstance(results[0], dict):
|
301 |
break
|
|
|
304 |
f'{result["label"]}': result["score"] for result in results
|
305 |
}
|
306 |
except Exception as e:
|
307 |
+
# inference api prediction failed, show the error message
|
308 |
+
logger.error(f"Get example prediction failed {e}")
|
309 |
return prediction_input, None
|
310 |
|
311 |
return prediction_input, prediction_result
|
text_classification_ui_helpers.py
CHANGED
@@ -12,8 +12,10 @@ from io_utils import read_column_mapping, write_column_mapping
|
|
12 |
from run_jobs import save_job_to_pipe
|
13 |
from text_classification import (
|
14 |
check_model_task,
|
|
|
15 |
get_example_prediction,
|
16 |
get_labels_and_features_from_dataset,
|
|
|
17 |
)
|
18 |
from wordings import (
|
19 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
@@ -159,9 +161,10 @@ def precheck_model_ds_enable_example_btn(
|
|
159 |
model_id, dataset_id, dataset_config, dataset_split
|
160 |
):
|
161 |
model_task = check_model_task(model_id)
|
|
|
162 |
if model_task is None or model_task != "text-classification":
|
163 |
gr.Warning("Please check your model.")
|
164 |
-
return gr.update(
|
165 |
|
166 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
167 |
return (gr.update(), gr.update(), "")
|
@@ -182,8 +185,6 @@ def precheck_model_ds_enable_example_btn(
|
|
182 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
183 |
|
184 |
|
185 |
-
|
186 |
-
|
187 |
def align_columns_and_show_prediction(
|
188 |
model_id,
|
189 |
dataset_id,
|
@@ -209,12 +210,31 @@ def align_columns_and_show_prediction(
|
|
209 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
210 |
]
|
211 |
|
212 |
-
|
213 |
-
prediction_input, prediction_output = get_example_prediction(
|
214 |
model_id, dataset_id, dataset_config, dataset_split
|
215 |
)
|
216 |
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
220 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
@@ -255,7 +275,7 @@ def align_columns_and_show_prediction(
|
|
255 |
|
256 |
return (
|
257 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
258 |
-
gr.update(value=
|
259 |
gr.update(visible=True, open=False),
|
260 |
gr.update(interactive=(run_inference and inference_token != "")),
|
261 |
"",
|
|
|
12 |
from run_jobs import save_job_to_pipe
|
13 |
from text_classification import (
|
14 |
check_model_task,
|
15 |
+
preload_hf_inference_api,
|
16 |
get_example_prediction,
|
17 |
get_labels_and_features_from_dataset,
|
18 |
+
HuggingFaceInferenceAPIResponse,
|
19 |
)
|
20 |
from wordings import (
|
21 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
|
|
161 |
model_id, dataset_id, dataset_config, dataset_split
|
162 |
):
|
163 |
model_task = check_model_task(model_id)
|
164 |
+
preload_hf_inference_api(model_id)
|
165 |
if model_task is None or model_task != "text-classification":
|
166 |
gr.Warning("Please check your model.")
|
167 |
+
return (gr.update(), gr.update(),"")
|
168 |
|
169 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
170 |
return (gr.update(), gr.update(), "")
|
|
|
185 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
186 |
|
187 |
|
|
|
|
|
188 |
def align_columns_and_show_prediction(
|
189 |
model_id,
|
190 |
dataset_id,
|
|
|
210 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
211 |
]
|
212 |
|
213 |
+
prediction_input, prediction_response = get_example_prediction(
|
|
|
214 |
model_id, dataset_id, dataset_config, dataset_split
|
215 |
)
|
216 |
|
217 |
+
if prediction_input is None or prediction_response is None:
|
218 |
+
return (
|
219 |
+
gr.update(visible=False),
|
220 |
+
gr.update(visible=False),
|
221 |
+
gr.update(visible=False, open=False),
|
222 |
+
gr.update(interactive=False),
|
223 |
+
"",
|
224 |
+
*dropdown_placement,
|
225 |
+
)
|
226 |
+
|
227 |
+
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
228 |
+
return (
|
229 |
+
gr.update(visible=False),
|
230 |
+
gr.update(visible=False),
|
231 |
+
gr.update(visible=False, open=False),
|
232 |
+
gr.update(interactive=False),
|
233 |
+
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
|
234 |
+
*dropdown_placement,
|
235 |
+
)
|
236 |
+
|
237 |
+
model_labels = list(prediction_response.keys())
|
238 |
|
239 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
240 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
|
|
275 |
|
276 |
return (
|
277 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
278 |
+
gr.update(value=prediction_response, visible=True),
|
279 |
gr.update(visible=True, open=False),
|
280 |
gr.update(interactive=(run_inference and inference_token != "")),
|
281 |
"",
|