Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms as T
|
5 |
+
|
6 |
+
def calc_result_confidence (model_output):
|
7 |
+
probs = torch.nn.functional.softmax(model_output, dim=1)
|
8 |
+
conf, classes = torch.max(probs, 1)
|
9 |
+
|
10 |
+
return conf.item(), classes.item()
|
11 |
+
|
12 |
+
def downsyndrome_gradio_inference(img_file):
|
13 |
+
classes = ['Down Syndrome', 'Healty']
|
14 |
+
infer_transform = T.Compose([
|
15 |
+
T.Resize((255, 255)),
|
16 |
+
T.ToTensor(),
|
17 |
+
])
|
18 |
+
transform_image = infer_transform(img_file.convert('RGB')).float().unsqueeze(0)
|
19 |
+
model = pipeline(task='image-classification', model='gitfreder/down-syndrome-detection')
|
20 |
+
conf, cls = calc_result_confidence(model(transform_image))
|
21 |
+
|
22 |
+
return {
|
23 |
+
'Predicted': classes[cls],
|
24 |
+
'Confidence Score': conf
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
iface = gr.Interface(fn=downsyndrome_gradio_inference, inputs=gr.Image(type='pil'), outputs=gr.JSON(), title="Down Syndrome Detection", description="A model interfaces that detect downsyndrom children from the photo")
|
29 |
+
iface.launch()
|