Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,41 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
from torchvision import transforms as T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def calc_result_confidence (model_output):
|
7 |
probs = torch.nn.functional.softmax(model_output, dim=1)
|
@@ -16,7 +51,8 @@ def downsyndrome_gradio_inference(img_file):
|
|
16 |
T.ToTensor(),
|
17 |
])
|
18 |
transform_image = infer_transform(img_file.convert('RGB')).float().unsqueeze(0)
|
19 |
-
model = pipeline(task='image-classification', model='gitfreder/down-syndrome-detection')
|
|
|
20 |
conf, cls = calc_result_confidence(model(transform_image))
|
21 |
|
22 |
return {
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
from torchvision import transforms as T
|
5 |
+
import torch.nn as nn
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
+
|
8 |
+
class DownSyndromeDetection(nn.Module, PyTorchModelHubMixin):
|
9 |
+
def __init__(self):
|
10 |
+
super(DownSyndromeDetection, self).__init__()
|
11 |
+
self.conv_layer_1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
12 |
+
self.conv_layer_2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
13 |
+
self.conv_layer_3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
14 |
+
self.conv_layer_4 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
15 |
+
self.conv_layer_5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
16 |
+
self.pooling_layer = nn.MaxPool2d(kernel_size=2)
|
17 |
+
self.fc_layer_1 = nn.Linear(16 * 28 * 28, 512)
|
18 |
+
self.fc_layer_2 = nn.Linear(512, 2)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = torch.tanh(self.conv_layer_1(x))
|
22 |
+
x = self.pooling_layer(x)
|
23 |
+
x = torch.tanh(self.conv_layer_2(x))
|
24 |
+
x = self.pooling_layer(x)
|
25 |
+
x = torch.tanh(self.conv_layer_3(x))
|
26 |
+
x = self.pooling_layer(x)
|
27 |
+
x = torch.tanh(self.conv_layer_4(x))
|
28 |
+
x = self.pooling_layer(x)
|
29 |
+
x = torch.tanh(self.conv_layer_5(x))
|
30 |
+
x = self.pooling_layer(x)
|
31 |
+
# flatten layer
|
32 |
+
x = x.view(x.size(0), -1)
|
33 |
+
x = torch.relu(self.fc_layer_1(x))
|
34 |
+
x = self.fc_layer_2(x)
|
35 |
+
|
36 |
+
x = torch.log_softmax(x, 1)
|
37 |
+
|
38 |
+
return x
|
39 |
+
|
40 |
|
41 |
def calc_result_confidence (model_output):
|
42 |
probs = torch.nn.functional.softmax(model_output, dim=1)
|
|
|
51 |
T.ToTensor(),
|
52 |
])
|
53 |
transform_image = infer_transform(img_file.convert('RGB')).float().unsqueeze(0)
|
54 |
+
#model = pipeline(task='image-classification', model='gitfreder/down-syndrome-detection')
|
55 |
+
model = DownSyndromeDetection().from_pretrained('gitfreder/down-syndrome-detection')
|
56 |
conf, cls = calc_result_confidence(model(transform_image))
|
57 |
|
58 |
return {
|